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Figure 4: Performance of Adam and AvaGrad with different learning rate α and adaptability parameter ε, measured in terms of
validation BPC (lower is better) on PTB of a 3-layer LSTM. Best performance is achieved with high adaptability/small ε.

B. Full Statement and Proof of Theorem 1
Theorem 4. For any ε ≥ 0 and constant β2,t = β2 ∈ [0, 1), there is a stochastic optimization problem for which Adam does
not converge to a stationary point.

Proof. Consider the following stochastic optimization problem:

min
w∈[0,1]

f(w) := Es∼D [fs(w)] fs(w) =

{
C w2

2 , with probability p := 1+δ
C+1

−w, otherwise
, (12)

where δ is a positive constant to be specified later, and C > 1−p
p > 1 + ε

w1

√
1−β2

is another constant that can depend on δ, β2
and ε, and will also be determined later. Note that∇f(w) = pCw − (1− p), and f is minimized at w? = 1−p

Cp = C−δ
C(1+δ) .

The proof follows closely from [34]. We assume w.l.o.g. that β1 = 0. We first consider the difference between two
consecutive iterates computed by Adam with a constant learning rate α:

∆t = wt+1 − wt = −α gt√
vt + ε

= −α gt√
β2vt−1 + (1− β2)g2t + ε

, (13)

and then we proceed to analyze the expected change in iterates divided by the learning rate. First, note that with probability p
we have gt = ∇(C

w2
t

2 ) = Cwt, and while gt = ∇(−w) = −1 with probability 1− p. Therefore, we have

E [∆t]

α
=

E [wt+1 − wt]
α

= −E
[

gt√
β2vt−1 + (1− β2)g2t + ε

]

= pE




−Cwt√
β2vt−1 + (1− β2)C2w2

t + ε︸ ︷︷ ︸
T1


+ (1− p)E




1√
β2vt−1 + (1− β2) + ε︸ ︷︷ ︸

T2


 ,

(14)

where the expectation is over all the randomness in the algorithm up to time t, as all expectations to follow in the proof. We
will proceed by computing lower bounds for the terms T1 and T2 above. Note that T1 = 0 for wt = 0, while for wt > 0 we
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can bound T1 by

T1 =
−Cwt√

β2vt−1 + (1− β2)C2w2
t + ε

≥ −Cwt√
(1− β2)C2w2

t

=
−1√

1− β2
. (15)

Combining the cases wt = 0 and wt > 0 (note that the feasible region is w ∈ [0, 1]), we have that, generally, T1 ≥
min(0, −1√

1−β2
) = −1√

1−β2
.

Next, we bound the expected value of T2 using Jensen’s inequality coupled with the convexity of x−1/2 as

E [T2] = E

[
1√

β2vt−1 + 1− β2 + ε

]
≥ 1√

β2E [vt−1] + 1− β2 + ε
. (16)

Let us consider E [vt−1] now. Note that

vt−1 = β2vt−2 + (1− β2)g2t−1

= β2
(
β2vt−3 + (1− β2)g2t−2

)
+ (1− β2)g2t−1

= β2
2vt−3 + β2(1− β2)g2t−2 + (1− β2)g2t−1

= β2
2

(
β2vt−4 + (1− β2)g2t−3

)
+ β2(1− β2)g2t−2 + (1− β2)g2t−1

= β3
2vt−4 + β2

2(1− β2)g2t−3 + β2(1− β2)g2t−2 + (1− β2)g2t−1
...

= βt−12 v0 + βt−22 (1− β2)g21 + βt−32 (1− β2)g22 + · · ·+ (1− β2)g2t−1

= (1− β2)

t−1∑

i=1

βt−i−12 g2i ,

(17)

where we used the fact that v0 = 0 (i.e. the second-moment estimate is initialized as zero).
Taking the expectation of the above expression for vt−1, we get

E [vt−1] = (1− β2)

t−1∑

i=1

βt−i−12 E
[
g2i
]

= (1− β2)

t−1∑

i=1

βt−i−12

(
1− p+ pC2E

[
w2
t

])
,

(18)

where we can use the fact that wt ∈ [0, 1], so w2
t ≤ 1 to get

E [vt−1] ≤ (1− β2)

t−1∑

i=1

βt−i−12

(
1− p+ pC2

)

= (1− β2)
(
1− p+ pC2

) t−1∑

i=1

βt−i−12

= (1− β2)
(
1− p+ pC2

) t−2∑

i=0

βi2

=
(
1− p+ pC2

) t−2∑

i=0

(
βi2 − βi+1

2

)

=
(
1− p+ pC2

) (
1− βt−12

)

≤ (1 + δ)C2 ,

(19)

where
∑t−2
i=0

(
βi2 − βi+1

2

)
= 1− βt−12 follows from the fact that the sum telescopes.
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Plugging the above bound in (16) yields

E [T2] ≥ 1√
β2(1 + δ)C + 1− β2 + ε

(20)

Combining the bounds for T1 and T2 in (14) gets us that

E [∆t]

α
≥ 1 + δ

C + 1

−1√
1− β2

+

(
1− 1 + δ

C + 1

)
1√

β2(1 + δ)C + 1− β2 + ε
(21)

Now, recall that w? = C−δ
C(1+δ) , so for C sufficiently large in comparison to δ we get w? ≈ 1

1+δ . On the other hand, the
above quantity can be made non-negative for large enough C, so E [wt] ≥ E [wt−1] ≥ · · · ≥ w1. In other words, Adam will,
in expectation, update the iterates towards w = 1 even though the stationary point is w∗ ≈ 1

1+δ and we have ‖∇f(1)‖2 = δ

at w = 1. Setting δ = 1, for example, implies that limT→∞ 1
T

∑T
t=1 E

[
‖∇f(wt)‖2

]
= 1, and hence Adam presents

nonconvergence in terms of stationarity. To see that w = 1 is not a stationary point due to the feasibility constraints, check that
∇f(1) = 1 > 0: that is, the negative gradient points towards the feasible region.

C. Technical Lemmas
This section presents intermediate results that are used in the proofs given in the next sections.
For simplicity we adopt the following notation for all following results:

Ht = max
i
ηt,i Lt = min

i
ηt,i , (22)

where ηt ∈ Rd denotes the parameter-wise learning rates computed at iteration t (the method being considered and consequently
the exact expression for ηt will be specified in each result).

For the following Lemmas we rely extensively on the assumption that ‖∇fs(w)‖∞ ≤ G∞ for some constant G∞, and also
that this assumption implies that there exists G2 such that ‖∇fs(w)‖ ≤ G2 for all s ∈ S and w ∈ Rd, which can be seen by
noting that

‖∇fs(w)‖ =

(
d∑

i=1

(∇fs(w))2i

) 1
2

≤
(
d ‖∇fs(w)‖2∞

) 1
2

=
√
d · ‖∇fs(w)‖∞ ≤

√
d ·G∞ , (23)

hence such constant G2 must exist as any G2 ≥
√
d ·G∞ satisfies ‖∇fs(w)‖ ≤ G2.

Lemma 1. Assume that there exists a constant G∞ such that ‖∇fs(w)‖∞ ≤ G∞ for all s ∈ S and w ∈ Rd, and let G2 be a
constant such that ‖∇fs(w)‖ ≤ G2 for all s ∈ S and w ∈ Rd. Moreover, assume that β1,t ∈ [0, 1) for all t ∈ N.

Let mt ∈ Rd be given by
mt = β1,tmt−1 + (1− β1,t)gt and m0 = 0 ,

where β1,t ∈ [0, 1) for all t ∈ N.
Then, we have

‖mt‖∞ ≤ G∞ and ‖mt‖ ≤ G2

for all t ∈ N and all possible sample sequences (s1, . . . , st) ∈ St.

Proof. Assume for the sake of contradiction that ‖mt‖∞ > G∞ for some t ∈ N and some sequence of samples (s1, . . . , st).
Moreover, assume w.l.o.g. that ‖mt′‖∞ ≤ G∞ for all t′ ∈ {1, . . . , t− 1} and note that there is no loss of generality since
(mt′)

t
t′=0 must indeed have a first element that satisfies ‖mt′‖∞ > G∞, which cannot be m0 since we have m0 = 0 by

definition.
Then, we have that mt,i > G∞ for some i ∈ [d], but

mt,i = β1,tmt−1,i + (1− β1,t)gt,i
≤ β1,t ‖mt−1‖∞ + (1− β1,t) ‖gt‖∞
≤ β1,tG∞ + (1− β1,t)G∞
= G∞ ,

(24)
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where we used β1,t ∈ [0, 1) and the assumptions ‖mt−1‖∞ ≤ G∞ and ‖gt‖∞ ≤ G∞.

To show that ‖mt‖ ≤ G2, note that if we assume ‖mt‖ > G2 and ‖mt′‖ ≤ G2 for all t′ ∈ {1, . . . , t− 1}, we again get a
contradiction since, by the triangle inequality,

‖mt‖ = ‖β1,tmt−1 + (1− β1,t)gt‖
≤ β1,t ‖mt−1‖+ (1− β1,t) ‖gt‖
≤ β1,tG2 + (1− β1,t)G2

= G2 ,

(25)

therefore it must indeed follow that ‖mt‖ ≤ G2.

Lemma 2. Assume that there exists a constant G∞ such that ‖∇fs(w)‖∞ ≤ G∞ for all s ∈ S and w ∈ Rd, and let G2 be a
constant such that ‖∇fs(w)‖ ≤ G2 for all s ∈ S and w ∈ Rd. Moreover, assume that β2,t ∈ [0, 1) for all t ∈ N.

Let vt ∈ Rd be given by

vt = β2,tvt−1 + (1− β2,t)g2t and v0 = 0 ,

where β2,t ∈ [0, 1) for all t ∈ N.

Then, we have

‖vt‖∞ ≤ G2
∞ and ‖vt‖ ≤ G2

2

for all t ∈ N and all possible sample sequences (s1, . . . , st) ∈ St.

Proof. The proof follows closely from the one of Lemma 1. Assume for the sake of contradiction that there exists t ∈ N and
some sequence of samples (s1, . . . , st) such that ‖vt‖∞ > G2

∞ and ‖vt′‖∞ ≤ G2
∞ for all t′ ∈ {1, . . . , t− 1}.

Then vt,i > G2
∞ for some i ∈ [d] but

vt,i = β2,tvt−1,i + (1− β2,t)g2t,i
≤ β2,t ‖vt−1‖∞ + (1− β2,t) ‖gt‖2∞
≤ β2,tG2

∞ + (1− β2,t)G2
∞

= G2
∞ ,

(26)

where we used β2,t ∈ [0, 1) and the assumptions ‖vt−1‖∞ ≤ G2
∞ and ‖gt‖∞ ≤ G∞, which raises a contradiction and shows

that indeed ‖vt‖∞ ≤ G2
∞.

For the `2 case, assume that ‖vt‖ > G2
2 and ‖vt′‖ ≤ G2

2 for all t′ ∈ {1, . . . , t− 1}, which yields

‖vt‖ =
∥∥β2,tvt−1 + (1− β2,t)g2t

∥∥
≤ β2,t ‖vt−1‖+ (1− β2,t)

∥∥g2t
∥∥

≤ β2,tG2
2 + (1− β2,t)G2

2

= G2
2 ,

(27)
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where we used the assumption ‖gt‖ ≤ G2 which also implies that

∥∥g2t
∥∥ =

[
d∑

i=1

g4t,i

] 1
2

≤




d∑

i=1

g4t,i +

d∑

i=1

d∑

j=1

g2t,ig
2
t,j




1
2

=



(

d∑

i=1

g2t,i

)2



1
2

=



(

d∑

i=1

g2t,i

) 1
2



2

≤ G2
2 .

(28)

Checking that (27) yields a contradiction completes the argument.

Lemma 3. Under the same assumptions of Lemma 1, we have

‖mt′ � ηt‖ ≤ min (G∞ ‖ηt‖ , G2Ht) , (29)

for all t, t′ ∈ N and all possible sample sequences (s1, . . . , smax(t,t′)).

Proof. By definition,

‖mt′ � ηt‖2 =

d∑

i=1

m2
t,i · η2t,i

≤
d∑

i=1

(max
j∈[d]

m2
t′,j) · η2t,i

≤ ‖mt′‖2∞
d∑

i=1

η2t,i

= ‖mt′‖2∞ · ‖ηt‖
2
,

(30)

hence invoking Lemma 1 and taking the square root yields ‖mt′ � ηt‖ ≤ G∞ ‖ηt‖.
Additionally, we have

‖mt′ � ηt‖2 ≤
d∑

i=1

m2
t′,i(max

j∈[d]
η2t,j)

≤ ‖ηt‖2∞
d∑

i=1

m2
t′,i

= ‖ηt‖2∞ · ‖mt′‖2 ,

(31)

hence recalling that ‖ηt‖∞ = Ht and by Lemma 1 we get ‖mt′ � ηt‖ ≤ G2Ht.
Combining the two bounds completes the proof.

Lemma 4. Under the same assumptions of Lemma 1, we have

〈∇f(wt),mt � ηt〉 ≥ (1− β1,t) 〈∇f(wt), gt � ηt〉 − β1,tG2 ‖mt−1 � ηt‖ , (32)

for all t ∈ N and all possible sample sequences (s1, . . . , st) ∈ St.
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Proof. Using the definition of mt, we have

〈∇f(wt),mt � ηt〉 =
〈
∇f(wt),

(
β1,tmt−1 + (1− β1,t)gt

)
� ηt

〉

= (1− β1,t) 〈∇f(wt), gt � ηt〉+ β1,t 〈∇f(wt),mt−1 � ηt〉
≥ (1− β1,t) 〈∇f(wt), gt � ηt〉 − β1,t ‖∇f(wt)‖ · ‖mt−1 � ηt‖ ,

(33)

where we used Cauchy-Schwarz in the last step.
Next, by Jensen’s inequality and the fact that ‖·‖ is convex we have, for all w ∈ Rd,

‖∇f(w)‖ = ‖Es [∇fs(w)]‖ ≤ Es [‖∇fs(w)‖] ≤ Es [G2] = G2 . (34)

Applying this bound in (33) yields the desired inequality.

Lemma 5. Assume that there exists a constant G∞ such that ‖∇fs(w)‖∞ ≤ G∞ for all s ∈ S and w ∈ Rd, and let G2 be a
constant such that ‖∇fs(w)‖ ≤ G2 for all s ∈ S and w ∈ Rd. Moreover, assume that β1,t ∈ [0, 1) and β1,t ≤ β1,t−1 for all
t ∈ N.

If ηt is independent of st for all t ∈ N, i.e. P (ηt = η, st = s) = P (ηt = η)P (st = s) for all η ∈ Rd, s ∈ S, then

Est [〈∇f(wt),mt � ηt〉] ≥ (1− β1)Lt ‖∇f(wt)‖2 − β1,tG2 ‖mt−1 � ηt‖ , (35)

for all t ∈ N and all possible sample sequences (s1, . . . , st) ∈ St.
Proof. From Lemma 4 we have that

〈∇f(wt),mt � ηt〉 ≥ (1− β1,t) 〈∇f(wt), gt � ηt〉 − β1,tG2 ‖mt−1 � ηt‖ . (36)

Then, taking the expectation over the draw of st ∈ S and recalling that wt, and hence also ∇f(wt), is computed from
(s1, . . . , st−1),

Est [〈∇f(wt),mt � ηt〉] ≥ (1− β1,t) 〈∇f(wt),Est [gt � ηt]〉 − β1,tG2Est [‖mt−1 � ηt‖] . (37)

Now, note that since we assume that ηt is independent of st, we get

Est [gt � ηt] = ηt � Est [gt] = ηt � Est [∇fst(wt)] = ηt �∇f(wt) , (38)

and also
Est [‖mt−1 � ηt‖] = ‖mt−1 � ηt‖ . (39)

Combining (39) and (38) into (37) yields

Est [〈∇f(wt),mt � ηt〉] ≥ (1− β1,t) 〈∇f(wt),∇f(wt)� ηt〉 − β1,tG2 ‖mt−1 � ηt‖ . (40)

Moreover, we have

〈∇f(wt),∇f(wt)� ηt〉 =

d∑

i=1

(∇f(wt))i(∇f(wt))iηt,i

=

d∑

i=1

(∇f(wt))
2
i ηt,i

≥
d∑

i=1

(∇f(wt))
2
i (min

j
ηt,j)

= Lt

d∑

i=1

(∇f(wt))
2
i

= Lt ‖∇f(wt)‖2 ,

(41)
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which, when applied to (40) yields

Est [〈∇f(wt),mt � ηt〉] ≥ (1− β1,t)Lt ‖∇f(wt)‖2 − β1,tG2 ‖mt−1 � ηt‖ , (42)

where we also used that β1,t ∈ [0, 1) and Lt ≥ 0. Using the fact that β1,t ≤ β1,t−1 ≤ β1 for all t ∈ N and hence
1− β1,t ≥ 1− β1 yields the desired inequality.

D. Proof of Theorem 3
We organize the proof as follows: we first prove an intermediate result (Lemma 6) and split the proof of the bounds in (8)

and (9) in two, where the latter can be seen as a refinement of (8) given the additional assumption that Z :=
∑T
t=1 αt mini ηt,i

is independent of each st.
Throughout the proof we use the following notation for clarity:

Ht = max
i
ηt,i Lt = min

i
ηt,i . (43)

Lemma 6. Assume that f is M -smooth, lower-bounded by some f∗ (i.e. f∗ ≤ f(w) for all w ∈ Rd), and that there exists a
constant G∞ such that ‖∇fs(w)‖∞ ≤ G∞ for all s ∈ S and w ∈ Rd, and let G2 be a constant such that ‖∇fs(w)‖ ≤ G2

for all s ∈ S and w ∈ Rd.
Consider any optimization method that performs updates following

wt+1 = wt − αt · ηt �mt , (44)

where we further assume assume that for all t ∈ N we have αt ≥ 0, β1,t = β1√
t

for some β1 ∈ [0, 1), and ηt,i ≥ 0 for all
i ∈ [d].

If ηt is independent of st for all t ∈ N, i.e. P (ηt = η, st = s) = P (ηt = η)P (st = s) for all η ∈ Rd, s ∈ S, then

T∑

t=1

αtLt ‖∇f(wt)‖2 ≤
1

1− β1

(
T∑

t=1

(f(wt)− Est [f(wt+1)]) +

T∑

t=1

αtβ1,tG2 ‖mt−1 � ηt‖

+
M

2

T∑

t=1

α2
tEst

[
‖mt � ηt‖2

])
,

(45)

for all T ∈ N and all possible sample sequences (s1, . . . , sT ) ∈ ST .

Proof. We start from the assumption that f is M -smooth, which yields

f(wt+1) ≤ f(wt) + 〈∇f(wt), wt+1 − wt〉+
M

2
‖wt+1 − wt‖2 . (46)

Plugging the update expression wt+1 = wt − αt · ηt �mt,

f(wt+1) ≤ f(wt)− αt 〈∇f(wt),mt � ηt〉+
α2
tM

2
‖mt � ηt‖2 . (47)

Now, taking the expectation over the random sample st ∈ S, we get

Est [f(wt+1)] ≤ f(wt)− αtEst [〈∇f(wt),mt � ηt〉] +
α2
tM

2
Est

[
‖mt � ηt‖2

]
, (48)

where we used the fact that wt and αt are not functions of of st – in particular, recall that wt is deterministically computed
from (s1, . . . , st−1).

Using the assumption that ηt is independent of st and applying Lemma 5, we get

Est [f(wt+1)] ≤ f(wt)− αt(1− β1)Lt ‖∇f(wt)‖2 + αtβ1,tG2 ‖mt−1 � ηt‖

+
α2
tM

2
Est

[
‖mt � ηt‖2

]
,

(49)
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which can be re-arranged into

αtLt ‖∇f(wt)‖2 ≤
1

1− β1

(
f(wt)− Est [f(wt+1)] + αtβ1,tG2 ‖mt−1 � ηt‖

+
α2
tM

2
Est

[
‖mt � ηt‖2

])
,

(50)

where we used the assumption that β1 ∈ [0, 1), hence 1− β1 > 0 which was used to divide both sides of the inequality.
Now, summing over t = 1 to T ,

T∑

t=1

αtLt ‖∇f(wt)‖2 ≤
1

1− β1

(
T∑

t=1

(f(wt)− Est [f(wt+1)]) +

T∑

t=1

αtβ1,tG2 ‖mt−1 � ηt‖

+

T∑

t=1

α2
tM

2
Est

[
‖mt � ηt‖2

])
,

(51)

which yields the desired result.

D.1. Proof of the first guarantee (8)

Proof. We start from the bound given in Lemma 6:

T∑

t=1

αtLt ‖∇f(wt)‖2 ≤
1

1− β1

(
T∑

t=1

(f(wt)− Est [f(wt+1)]) +

T∑

t=1

αtβ1,tG2 ‖mt−1 � ηt‖

+
M

2

T∑

t=1

α2
tEst

[
‖mt � ηt‖2

])
.

(52)

Now, using Lemma 3 to upper bound both ‖mt−1 � ηt‖ and ‖mt � ηt‖ by G2Ht,

T∑

t=1

αtLt ‖∇f(wt)‖2 ≤
1

1− β1

(
T∑

t=1

(f(wt)− Est [f(wt+1)]) +

T∑

t=1

αtβ1,tG
2
2Ht

+
M

2

T∑

t=1

α2
tG

2
2H

2
t

)
,

(53)

where we used that Est
[
H2
t

]
= H2

t since Ht is deterministically computed from ηt, which in turn is independent of st.
Next, from the assumption in Theorem 3 that there are positive constants L and H such that L ≤ ηt,i ≤ H for all

t ∈ N, i ∈ [d] and sample sequences (s1, . . . , st), it follows that

L ≤ Lt = min
i∈[d]

ηt,i and H ≥ Ht = max
i∈[d]

ηt,i

for all t ∈ N, therefore

L

T∑

t=1

αt ‖∇f(wt)‖2 ≤
1

1− β1

(
T∑

t=1

(f(wt)− Est [f(wt+1)]) +G2
2H

T∑

t=1

αtβ1,t

+
MG2

2H
2

2

T∑

t=1

α2
t

)
.

(54)
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Dividing both sides by L ≥ 0 and letting αt = α′/
√
T yields

T∑

t=1

α′√
T
‖∇f(wt)‖2 ≤

1

L(1− β1)

(
T∑

t=1

(f(wt)− Est [f(wt+1)]) +G2
2H

T∑

t=1

α′√
T
β1,t

+
MG2

2H
2

2

T∑

t=1

α′2

T

)
,

(55)

and, rearranging and using the fact that

T∑

t=1

β1,t = β1

T∑

t=1

1√
t
≤ β1

∫ T

0

1√
t
dt ≤ 2β1

√
T ,

which implies that
∑T
t=1

α′√
T
β1,t ≤ 2α′β1, we get

α′√
T

T∑

t=1

‖∇f(wt)‖2 ≤
1

L(1− β1)

(
T∑

t=1

(f(wt)− Est [f(wt+1)]) + 2α′β1G
2
2H

+
α′2MG2

2H
2

2

)
.

(56)

Now, taking the expectation over the full sample sequence (s1, . . . , sT ) yields

α′√
T

T∑

t=1

E
[
‖∇f(wt)‖2

]
≤ 1

L(1− β1)

(
T∑

t=1

(E [f(wt)]− E [f(wt+1)]) + 2α′β1G
2
2H

+
α′2MG2

2H
2

2

)
.

(57)

Note that, by telescoping sum,

T∑

t=1

E [f(wt)]− E [f(wt+1)] = E [f(w1)]− E [f(wT+1)] ≤ f(w1)− f∗ , (58)

where the last step follows since w1 (the parameters at initialization) is independent of the drawn samples, and also from the
assumption that f∗ lower bounds f .

Combining the above with (57) and dividing both sides by α′ ·
√
T ,

1

T

T∑

t=1

E
[
‖∇f(wt)‖2

]
≤ 1

L
√
T (1− β1)

(
f(w1)− f∗

α′
+ 2β1G

2
2H +

α′MG2
2H

2

2

)
, . (59)

Finally, we will use Young’s inequality with p = 2 and the conjugate exponent q = 2, which states that xy ≤ x2

2 + y2

2 for
any nonnegative numbers x, y.

In that context, let

x =
1√
α′

and y =
√
α′H , (60)

which yields

H = xy ≤ x2

2
+
y2

2
=

1

α′
+ α′H2 , (61)

and hence

2β1G
2
2 ·H ≤

2β1G
2
2

α′
+ 2β1G

2
2 · α′H2 . (62)
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Plugging the above in (59) yields

1

T

T∑

t=1

E
[
‖∇f(wt)‖2

]
≤ 1

L
√
T (1− β1)

(
2β1G

2
2 + f(w1)− f∗

α′
+ α′H2G

2
2(M + 2β1)

2

)
, . (63)

Verifying that the above is O
(

1
L
√
T

(
1
α′ + α′H2

))
in terms of T, α′, L and H finishes the proof.

D.2. Proof of the second guarantee (9)

Proof. As before, we start from Lemma 6, which states that

T∑

t=1

αtLt ‖∇f(wt)‖2 ≤
1

1− β1

(
T∑

t=1

(f(wt)− Est [f(wt+1)]) +

T∑

t=1

αtβ1,tG2 ‖mt−1 � ηt‖

+
M

2

T∑

t=1

α2
tEst

[
‖mt � ηt‖2

])
.

(64)

We then invoke Lemma 3 to upper bound ‖mt−1 � ηt‖ by G2Ht and ‖mt � ηt‖ by G∞ ‖ηt‖2:

T∑

t=1

αtLt ‖∇f(wt)‖2 ≤
1

1− β1

(
T∑

t=1

(f(wt)− Est [f(wt+1)]) +

T∑

t=1

αtβ1,tG
2
2Ht

+
M

2

T∑

t=1

α2
tG

2
∞Est

[
‖ηt‖2

])
.

(65)

Next, define the unormalized probability distribution p̃(t) = αtLt, so that p(t) = p̃(t)/Z with Z =
∑T
t=1 p̃(t) =∑T

t=1 αtLt is a valid distribution over t ∈ {1, . . . T}. Dividing both sides by Z yields

T∑

t=1

p(t) ‖∇f(wt)‖2 ≤
1

Z(1− β1)

T∑

t=1


f(wt)− Est [f(wt+1)] + αtβ1,tG

2
2Ht +

α2
tMG2

∞Est
[
‖ηt‖2

]

2


 (66)

Now, taking the conditional expectation over all samples S given Z:

E

[
T∑

t=1

p(t) ‖∇f(wt)‖2
∣∣∣Z
]
≤ 1

Z(1− β1)

( T∑

t=1

(
E [f(wt)|Z]− E [Est [f(wt+1)] |Z]

)

+

T∑

t=1

E


αtβ1,tG2

2Ht +
α2
tMG2

∞Est
[
‖ηt‖2

]

2

∣∣∣Z



)

≤ 1

Z(1− β1)

( T∑

t=1

(
E [f(wt)|Z]− E [f(wt+1)|Z]

)

+

T∑

t=1

E

[
αtβ1,tG

2
2Ht +

α2
tMG2

∞ ‖ηt‖2
2

∣∣∣Z
])

=
1

Z(1− β1)

(
f(w1)− f∗

+

T∑

t=1

E

[
αtβ1,tG

2
2Ht +

α2
tMG2

∞ ‖ηt‖2
2

∣∣∣Z
])

.

(67)
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where in the second step we used E [Est [·] |Z] = E [·|Z] which follows from the assumption that p(Z|st) = p(Z), and the
third step follows from telescoping sum and the assumption that f∗ lower bounds f .

Then, taking the expectation over Z and re-arranging:

E

[
T∑

t=1

p(t) ‖∇f(wt)‖2
]
≤ E

[
1

Z(1− β1)

T∑

t=1

(
f(w1)− f∗

T
+ αtβ1,tG

2
2Ht +

α2
tMG2

∞ ‖ηt‖2
2

)]
. (68)

Setting β1 = 0 for simplicity yields

E

[
T∑

t=1

p(t) ‖∇f(wt)‖2
]
≤ E

[
1

Z

T∑

t=1

(
f(w1)− f∗

T
+
α2
tMG2

∞ ‖ηt‖2
2

)]
. (69)

Now, let αt = α′t/
√
T

E

[
T∑

t=1

p(t) ‖∇f(wt)‖2
]
≤ E

[
1

Z

T∑

t=1

(
f(w1)− f∗

T
+
α′2t MG2

∞ ‖ηt‖2
2T

)]

=
1

T
· E
[

1

Z

T∑

t=1

(
f(w1)− f∗ +

1

2
α′2t MG2

∞ ‖ηt‖2
)]

.

(70)

Now, recall that Z =
∑T
t=1 αtLt = 1√

T

∑T
t=1 α

′
tLt, hence

E

[
T∑

t=1

p(t) ‖∇f(wt)‖2
]
≤ 1√

T
· E
[∑T

t=1 f(w1)− f∗ + 1
2α
′2
t MG2

∞ ‖ηt‖2∑T
t=1 α

′
tLt

]

≤ O
(

1√
T
· E
[∑T

t=1 1 + α′2t ‖ηt‖2∑T
t=1 α

′
tLt

])
.

(71)

Finally, checking that
∑T
t=1 p(t) ‖∇f(wt)‖2 = Et∼P(t|S)

[
‖∇f(wt)‖2

]
:

E S∼DT

t∼P(t|S)

[
‖∇f(wt)‖2

]
≤ O

(
1√
T
· E
[∑T

t=1 1 + α′2t ‖ηt‖2∑T
t=1 α

′
tLt

])
. (72)

Recalling that Lt = mini ηt,i completes the proof.

E. Full Statement and Proof of Theorem 2
We organize the formal statement and proof of Theorem 2 as follows: we first state a general convergence result for Adam

which depends on the step-wise adaptivity parameter εt and the learning rates αt in Theorem 5, and then present a Corollary
that shows how a O(1/

√
T ) rate follows from such result (Corollary 6). This section proceeds the proof of Theorem 3

(Appendix D) as the proof presented here is more easily seen as a small variant (although overall simpler) of the analysis given
in the previous section. Steps which also appear in the proof of Theorem 3 are not necessarily described in full detail, hence
the following arguments can be better understood with the previous section in context.

Throughout the proof we use the following notation for clarity:

Ht = max
i
ηt,i Lt = min

i
ηt,i . (73)

Theorem 5. Assume that f is smooth and fs has bounded gradients. If εt ≥ εt−1 > 0 for all t ∈ [T ], then for the iterates
{w1, . . . , wT } produced by Adam we have

E
[
‖∇f(wt)‖2

]
≤ O




1 +
∑T
t=1

αt

ε2t−1
(1 + αt + εt − εt−1)

∑T
t=1

αt

1+εt−1


 , (74)

where wt is sampled from p(t) ∝ αt

G∞+εt−1
.
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Corollary 6. Setting εt = Θ(T p1tp2) for any p1, p2 > 0 such that p1 + p2 ≥ 1
2 (e.g. εt = Θ(

√
T ), εt = Θ(

4√
Tt), εt =

Θ(
√
t)) and αt = Θ

(
εt√
T

)
on Theorem 5 yields a bound of O(1/

√
T ) for Adam.

Proof. Similarly to the proof of Theorem 3, we plug the update rule wt+1 = wt − αt · ηt �mt in

f(wt+1) ≤ f(wt) + 〈∇f(wt), wt+1 − wt〉+
M

2
‖wt+1 − wt‖2 . (75)

yielding

f(wt+1) ≤ f(wt)− αt 〈∇f(wt),mt � ηt〉+
α2
tM

2
‖mt � ηt‖2 . (76)

By Lemmas 3 and 4, we have

f(wt+1) ≤ f(wt)− αt(1− β1,t) 〈∇f(wt), gt � ηt〉+ αtβ1,tG
2
2Ht +

α2
tMG2

∞ ‖ηt‖2
2

. (77)

Now, note that we can write

〈∇f(wt), gt � ηt〉 = 〈∇f(wt), gt � ηt−1〉+ 〈∇f(wt), gt � (ηt − ηt−1)〉 ,
therefore we have that

f(wt+1) ≤ f(wt)− αt(1− β1,t) 〈∇f(wt), gt � ηt−1〉+ αtβ1,tG
2
2Ht +

α2
tMG2

∞ ‖ηt‖2
2

− αt(1− β1,t) 〈∇f(wt), gt � (ηt − ηt−1)〉

≤ f(wt)− αt(1− β1,t) 〈∇f(wt), gt � ηt−1〉+ αtβ1,tG
2
2Ht +

α2
tMG2

∞ ‖ηt‖2
2

+ αt(1− β1,t) |〈∇f(wt), gt � (ηt − ηt−1)〉|

(78)

We will proceed to bound |〈∇f(wt), gt � (ηt − ηt−1)〉|. By Cauchy-Schwarz we have

|〈∇f(wt), gt � (ηt − ηt−1)〉| ≤ ‖∇f(wt)‖ · ‖gt � (ηt − ηt−1)‖ ≤ G2 ‖gt � (ηt − ηt−1)‖ , (79)

and moreover

‖gt � (ηt − ηt−1)‖ =

(
d∑

i=1

g2t,i|ηt,i − ηt−1,i|2
)1/2

≤
(

d∑

i=1

G2
∞|ηt,i − ηt−1,i|2

)1/2

= G∞ ‖ηt − ηt−1‖ ,

(80)

therefore we get

f(wt+1) ≤ f(wt)− αt(1− β1,t) 〈∇f(wt), gt � ηt−1〉+ αtβ1,tG
2
2Ht +

α2
tMG2

∞ ‖ηt‖2
2

+ αt(1− β1,t)G∞G2 ‖ηt − ηt−1‖
(81)

Using the fact that ηt−1 is independent of st and that Est [gt] = ∇f(wt), taking expectation over st yields

Est [f(wt+1)] ≤ f(wt)− αt(1− β1,t) 〈∇f(wt),∇f(wt)� ηt−1〉+ αtβ1,tG
2
2Est [Ht] +

α2
tMG2

∞Est
[
‖ηt‖2

]

2
+ αt(1− β1,t)G∞G2Est [‖ηt − ηt−1‖]

≤ f(wt)− αt(1− β1) ‖∇f(w)‖2 Lt−1 + αtβ1,tG
2
2Est [Ht] +

α2
tMG2

∞Est
[
‖ηt‖2

]

2
+ αt(1− β1)G∞G2Est [‖ηt − ηt−1‖] ,

(82)
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where in the second step we used β1,t ≤ β1 and

〈∇f(wt),∇f(wt)� ηt−1〉 =

d∑

i=1

∇f(w)2i ηt−1,i ≥ min
j
ηt−1,j

d∑

i=1

∇f(w)2i = Lt−1 ‖∇f(w)‖2 .

Re-arranging,

αtLt−1(1− β1) ‖∇f(wt)‖2 ≤ f(wt)− Est [f(wt+1)] + αtβ1,tG
2
2Est [Ht] +

α2
tMG2

∞Est
[
‖ηt‖2

]

2
+ αt(1− β1)G∞G2Est [‖ηt − ηt−1‖] ,

(83)

Next, we will bound Lt−1, Ht, ‖ηt‖, and ‖ηt − ηt−1‖. Recall that, for Adam, we have

ηt =
1√

vt + εt
,

and since vt,i ≤ G2
∞, we also have that

1

G∞ + εt
≤ ηt,i ≤

1

εt
.

From the above it follows that
1

G∞ + εt−1
≤ Lt−1

and

Ht ≥
1

εt
,

which also implies that ‖ηt‖ ≤
√
d
εt

.
As for ‖ηt − ηt−1‖, check that

∣∣∣ηt,i − ηt−1,i
∣∣∣ ≤ 1

εt−1
− 1

G∞ + εt
=

G∞ + εt − εt−1
G∞εt−1 + εtεt−1

≤ G∞ + εt − εt−1
ε2t−1

, (84)

where we used the assumption that εt ≥ εt−1. The above implies that ‖ηt − ηt−1‖ ≤
√
d · G∞+εt−εt−1

ε2t−1
.

Applying the bounds given above to (83) yields

αt
G∞ + εt−1

(1− β1) ‖∇f(wt)‖2 ≤ f(wt)− Est [f(wt+1)] + β1,tG
2
2

αt
εt

+
α2
tMdG2

∞
ε2t

+ αt(1− β1)
√
dG∞G2 ·

G∞ + εt − εt−1
ε2t−1

,

(85)

Next, define the unormalized probability distribution p̃(t) = αt

G∞+εt−1
, so that p(t) = p̃(t)/Z with Z =

∑T
t=1 p̃(t) =

∑T
t=1

αt

G∞+εt−1
is a valid distribution over t ∈ {1, . . . T}. Adopting this notation and dividing both sides by Z(1− β1):

p(t) ‖∇f(wt)‖2 ≤
1

Z(1− β1)

(
f(wt)− Est [f(wt+1)] + β1,tG

2
2

αt
εt

+
α2
tMdG2

∞
ε2t

+ αt(1− β1)
√
dG∞G2 ·

G∞ + εt − εt−1
ε2t−1

)
.

(86)
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Taking the expectation over all samples and summing over t yields

T∑

t=1

p(t)E
[
‖∇f(wt)‖2

]
≤ 1

Z(1− β1)

T∑

t=1

(
E [f(wt)]− E [f(wt+1)] + β1,tG

2
2

αt
εt

+
α2
tMdG2

∞
ε2t

+ αt(1− β1)
√
dG∞G2 ·

G∞ + εt − εt−1
ε2t−1

)

≤ 1

Z(1− β1)

[
f(w1)− f∗ +

T∑

t=1

(
β1,tG

2
2

αt
εt

+
α2
tMdG2

∞
ε2t

+ αt(1− β1)
√
dG∞G2 ·

G∞ + εt − εt−1
ε2t−1

)]
.

(87)

where we used the fact that
∑T
t=1 E [f(wt)]− E [f(wt+1)] = f(w1)− E [f(wT+1)] ≤ f(w1)− f∗ by telescoping sum and

where f∗ lower bounds f .
For simplicity, assume that β1,t = 0 (or, alternatively, let β1,t = β1√

T
and apply Young’s inequality as in the proof of

Theorem 3). In this case, we get

T∑

t=1

p(t)E
[
‖∇f(wt)‖2

]
≤ 1

Z(1− β1)

[
f(w1)− f∗ +

T∑

t=1

αt
ε2t−1

(
αtMdG2

∞ + (1− β1)
√
dG∞G2 · (G∞ + εt − εt−1)

)]
,

(88)

and recalling that Z =
∑T
t=1

αt

G∞+εt−1
yields

Et∼P (t)

[
E
[
‖∇f(wt)‖2

]]
≤
f(w1)− f∗ +

∑T
t=1

αt

ε2t−1

(
αtMdG2

∞ + (1− β1)
√
dG∞G2 · (G∞ + εt − εt−1)

)

(1− β1)
∑T
t=1

αt

G∞+εt−1

≤ O




1 +
∑T
t=1

αt

ε2t−1
(1 + αt + εt − εt−1)

∑T
t=1

αt

1+εt−1


 ,

(89)

which completes the argument.

F. Details on Hyperparameter Optimization
This section contains additional details on the experiments performed in Section 7. We use Gradientless Descent (GLD

[10]), a recently-proposed zeroth-order optimization method to tune both α and ε for Adam, AMSGrad and AvaGrad. The
search space consists of 21 values for α and 21 values for ε, yielding a discrete search space composed of 441 hyperparameter
settings. We use a projected isotropic Gaussian constrained to [0, 21]× [0, 21] for sampling: we first sample (x, y) and then
round both x and y to the nearest integer to associate the continuous samples to elements in the discrete 21× 21 search space.
We use a search radius of 4 and 3 samples per iteration.

For the coordinate-wise hyperparameter optimization, we run GLD separately on α and ε, in an alternating fashion. In
practice, this amounts to using univariate Gaussians during sampling, where in one iteration the distribution is over α only, and
in the other it is over ε. We denote GLD when run in this manner by “CGLD”, standing for coordinate gradientless descent.
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