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Figure 4: Performance of Adam and AvaGrad with different learning rate o and adaptability parameter ¢, measured in terms of
validation BPC (lower is better) on PTB of a 3-layer LSTM. Best performance is achieved with high adaptability/small e.

B. Full Statement and Proof of Theorem 1

Theorem 4. For any € > 0 and constant 2, = (B2 € [0, 1), there is a stochastic optimization problem for which Adam does
not converge to a stationary point.

Proof. Consider the following stochastic optimization problem:

. O with probabilit = 148
min f(w) = Bep [fo(w)]  fow) =4 2 P yoPT o (12)
wel0,1] —w, otherwise

where 9 is a positive constant to be specified later, and C' > 1;% >1+ ﬁ\/@ is another constant that can depend on §, 5o
and ¢, and will also be determined later. Note that V f (w) = pCw — (1 — p), and f is minimized at w* = %;’ = %.
The proof follows closely from [34]. We assume w.l.0.g. that 3; = 0. We first consider the difference between two

consecutive iterates computed by Adam with a constant learning rate o:

At = Wt41 — W = —« g¢ = —« 9¢ 5 5 (13)
Ve e \/521&—1 + (1= B2)gi + ¢

and then we proceed to analyze the expected change in iterates divided by the learning rate. First, note that with probability p
2
we have gy = V(C 5t ) = Cwy, and while g, = V(—w) = —1 with probability 1 — p. Therefore, we have

E [At] _ ]E [wt+1 — wt] _ —]E gt
a a VBavi—1 + (1 — Ba)g? + €
C 1 (19
—Cw,
= JE +(1-p)E ,
P VB2vi—1 + (1 — B2)C2w} + € -2 VB2vi—1+ (1= B2) + ¢
T T>

where the expectation is over all the randomness in the algorithm up to time ¢, as all expectations to follow in the proof. We
will proceed by computing lower bounds for the terms 73 and 7T, above. Note that 7} = 0 for w; = 0, while for w; > 0 we
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can bound 7 by
—C’wt > —O’th _ —1
VB2 + (1= Bo)C?wl +¢ /(1 —=5)C?uw2 VI=02

Combining the cases w; = 0 and w; > 0 (note that the feasible region is w € [0, 1]), we have that, generally, 77 >
; -1y _ _ -1

min(0, 7=5) = g
Next, we bound the expected value of T using Jensen’s inequality coupled with the convexity of z—/2 as

T =

15)

1 1
E|T;|=E 16
= Bovg_1+1— B2 +e \/52 [ve—i] +1—PBate (10

Let us consider E [v;_1] now. Note that
vio1 = Bavio + (1= Ba)gi 4
= B2 (B2ve—3 + (1 — B2)gi_s) + (1 — B2)gi_y
= B3vi—s + Ba(l — B2)gi o + (1 — B2)gi_y
= B3 (Bavi—a + (1 = B2)gi_3) + Bo(1 = Ba)gi o + (1 — B2)gi 4
= B3vi—a + B3 (1= B2)gi5 + Bo(1 — B2)gi o + (1 — B2)gi 1 (17)

=By v + BFQ(I — B2)gi + B5 21— Ba)gs + -+ (1= Ba)gi
1 . 62 Zﬂf i—1 2

where we used the fact that vg = 0 (i.e. the second-moment estimate is initialized as zero).
Taking the expectation of the above expression for v;_1, we get

E [via] = (1 ) iﬁé—“lE [9?]

(18)
= (1-f) Zﬁt (1 - p+pCPE [wi]) |
where we can use the fact that w; € [0, 1], so w? < 1 to get
E [v;-1] < (1 - Ba) Zﬁt (1= p+pC?)
t—1
=(1—B2) (1—p+pC?)> B!
i=1
=2
=(1=8) (1-p+pC?) > B (19)
i=0
t—2
1_p+p02 Z z+1
= (1-p+pC?) (1-57")

< (1+0)C?,

where S°0_7 (84 — B5T1) = 1 — 47" follows from the fact that the sum telescopes.
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Plugging the above bound in (16) yields

1

E T3] > 20
Y X Ty 20

Combining the bounds for T and 7% in (14) gets us that

E [A] 1+6 -1 1496 1
> +11- (21)
a C+1V1-p C+1) \/Bo(1+686)C+1—PBa+e

Now, recall that w* = %, so for C sufficiently large in comparison to § we get w* = ﬁ. On the other hand, the

above quantity can be made non-negative for large enough C, so E [w;] > E [w;_1] > - -+ > w;. In other words, Adam will,
in expectation, update the iterates towards w = 1 even though the stationary point is w* ~ ﬁ and we have |V f(1)]|* =0
at w = 1. Setting § = 1, for example, implies that lim7_,o 7 Zthl E {HVf(wt)Hz} = 1, and hence Adam presents
nonconvergence in terms of stationarity. To see that w = 1 is not a stationary point due to the feasibility constraints, check that

Vf(1) =1 > 0: that is, the negative gradient points fowards the feasible region. O

C. Technical Lemmas

This section presents intermediate results that are used in the proofs given in the next sections.
For simplicity we adopt the following notation for all following results:

H, = maxng ; L, = min MNti s (22)

where 7; € R? denotes the parameter-wise learning rates computed at iteration ¢ (the method being considered and consequently
the exact expression for 7, will be specified in each result).

For the following Lemmas we rely extensively on the assumption that ||V f5(w)|| ., < G for some constant G, and also
that this assumption implies that there exists G such that |V fs(w)|| < Go forall s € S and w € R?, which can be seen by
noting that

y 1 .
IV fo(w)]| = (Z(vmw))?) < (dIVE@)I5)" = V- IVl < V-G, (23)

i=1
hence such constant G2 must exist as any Go > V/d - G satisfies |V fs(w)|| < Go.

Lemma 1. Assume that there exists a constant Gog such that |V fs(w)|| ., < Goo forall s € S and w € R, and let G5 be a
constant such that ||V fs(w)| < Ga forall s € S and w € R Moreover, assume that 81 ; € [0,1) for all t € N.
Let m; € R? be given by
my = Breme—1+ (1 = Bit)gr and mo =0,
where 81, € [0,1) forall t € N.
Then, we have
[mille <Goo and  |lmy < Gy

for allt € N and all possible sample sequences (s1, ..., s;) € St
Proof. Assume for the sake of contradiction that ||m.|| ., > G« for some ¢ € N and some sequence of samples (s, ..., s¢).
Moreover, assume w.l.o.g. that [|m || < G forallt’ € {1,...,t — 1} and note that there is no loss of generality since

(my )t _, must indeed have a first element that satisfies ||m ||, > Goo, which cannot be mg since we have my = 0 by
definition.
Then, we have that m; ; > G for some i € [d], but

Mg = Prami—1,; + (1 — B1.¢)9e.i
< B llme—alloe + (1= B1e) 19l
<B11Goo + (1 = P1,4)Go
= G007

(24)
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where we used 3 ¢ € [0, 1) and the assumptions |[m_1 || < Goo and ||g¢]| o, < Goo

To show that ||m;|| < G2, note that if we assume ||m;|| > G2 and ||my || < Gy forall ¢’ € {1,...,t — 1}, we again geta
contradiction since, by the triangle inequality,

el = [181,eme—1 4 (1 = Bre)gel

< Brellme—all + (1 = Bre) llgell 25)
< B14Go+ (1 — p14)Go
= GQ}
therefore it must indeed follow that ||m;|| < Ga.
O

Lemma 2. Assume that there exists a constant Gog such that ||V fs(w)| ., < Goo forall s € S and w € R? and let G2 be a
constant such that |V fs(w)| < Go forall s € S and w € R%. Moreover, assume that 324 € [0,1) for all t € N.

Let v, € RY be given by

vy = PBa i1 + (1 — Bz,t)gf and vy =0,

where 3, € [0,1) forall t € N.

Then, we have

lvelloo < G2 and lvel| < G3
for all t € N and all possible sample sequences (s1, . ..,s;) € St

Proof. The proof follows closely from the one of Lemma 1. Assume for the sake of contradiction that there exists ¢ € N and
some sequence of samples (s1, ..., s¢) such that |[v]| > G2 and |jvp | < G2 forallt’ € {1,...,t —1}.

Then v ; > G2, for some i € [d] but

v = Bayve—1i + (1= Bat)gi
< B ot lloo + (1= B2) gnll2,
< BouGE + (1= Bay) G2
=G,

(26)

where we used 32 ; € [0,1) and the assumptions [|ve_1 ||, < G% and ||g¢||., < Goo, Which raises a contradiction and shows
that indeed ||v; || < GZ..

For the /; case, assume that ||v;|| > G3 and ||vy|| < G3 forall ¢’ € {1,...,t — 1}, which yields

vell = ||B2,eve—1 + (1 = B2,) g7 ||
< Bat llve—ll + (1 = Ba,e) ||67 |
< B2.4G3 + (1= B2.4)G5
=G3,

@7
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where we used the assumption ||¢g;|| < G2 which also implies that

-4 1
||9?|| = Zg;{i‘|
i=1

Nl

IN
g
£

+

™
M~

o

R,

(28)

Checking that (27) yields a contradiction completes the argument.

Lemma 3. Under the same assumptions of Lemma 1, we have
[me © nell < min (Goo [|mel] , G2 He) (29)
forallt,t" € N and all possible sample sequences (s1, . .., Smax(t,t/))-

Proof. By definition,

d
2
[me ©nel|” = mez N

< maxm, ; R
Z_; jeld ! K (30)

d
2
< llmells Y i
i=1

2 2
= [lma |5 - llmel

hence invoking Lemma 1 and taking the square root yields ||my @ n:]| < Goo |02 ]]-
Additionally, we have

d
2
lme ©nell> <Y mi (maxry ;)
i=1
d (3D
2
< mellze D mé s
i=1
2 2
= el - llmel™
hence recalling that ||| ., = H; and by Lemma 1 we get |my © n;|| < G2Hy.
Combining the two bounds completes the proof. O
Lemma 4. Under the same assumptions of Lemma 1, we have
(Vf(w),me ©me) > (1= Bre) (Vf(we), gt ©me) — Br4Ga [me—1 © el (32)

forall t € N and all possible sample sequences (s1, . ..,s;) € St
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Proof. Using the definition of m;, we have

(Vf(wg),me @) = <vf(wt)a (51,tmt71 +(1- 51,t)gt) O] 7)t>

= (1= B1,) (Vf(we), 9e ©me) + Pre (Vf(we), me—1 ©ny) (33)
> (1= Prie) (Vf(we), gt ©ne) — B |V f(we)|l - |me—1 @ el

where we used Cauchy-Schwarz in the last step.
Next, by Jensen’s inequality and the fact that ||-|| is convex we have, for all w € R<,

V()| = [[Es [V fs(w)]ll < Es[[Vfs(w)]l] < Es [Go] = G2 (34)

Applying this bound in (33) yields the desired inequality.
O

Lemma 5. Assume that there exists a constant Gog such that |V fs(w)|| ., < Goo forall s € S and w € R, and let G5 be a
constant such that ||V fs(w)|| < G forall s € S and w € RY. Moreover, assume that 314 € [0,1) and 31 4 < B1,4—1 for all
teN

If n; is independent of s for allt € N, i.e. P(n; = 1,5 = s) = P(n; = n)P(s; = s) foralln € RY s € S, then

Es, [(Vf(we),me @ ne)] = (1= B1)Le [V (we)||” = Br4Ga |me—1 @ e (35)

for all t € N and all possible sample sequences (s1, . ..,s;) € St
Proof. From Lemma 4 we have that
(Vf(we),me ©m) = (1= Bre) (VF(we), g ©me) — Br,uGa [[mi—1 © me| - (36)

Then, taking the expectation over the draw of s; € S and recalling that w;, and hence also V f(w;), is computed from
(81» B 8t71),

Es, [(Vf(wi),me ©ne)] > (1= Bre) (Vf(we), Es, (g6 © mi]) — B1,6G2Es, [[[me—1 © mel[] - (37

Now, note that since we assume that 7, is independent of s;, we get

Es, [g: © ne] = ne © By, [9¢] = e © B, [V fs, (wi)] = 1 © V f(wy) (38)
and also
Es, [[[me—1 © nell] = lma—1 © mel| - (39)
Combining (39) and (38) into (37) yields
Es, (Vf(we),me ©ne)] > (1= Bre) (Vf(we), Vf(we) ©ne) — Br,eGo ||me—1 © nel| (40)
Moreover, we have
d
(Vf(we), Vf(w) ©@me) =Y (Y (wn)i(V f(wy) )i,
i=1
d
= Z(Vf(wt))?m,i
(41)

>2Vf wy)) mlnntj)

d
= Z V f(wy))
= ||Vf(wt)H ,
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which, when applied to (40) yields

Es, [<Vf(wt),mt © 77t>] > (1 - 51,t)Lt va(wt)Hz - 51,tG2 ||mt—1 O) 77tH s (42)

where we also used that 8;;, € [0,1) and L; > 0. Using the fact that 8;; < 1,1 < f; for all ¢ € N and hence
1— B1,+ > 1 — By yields the desired inequality.
O

D. Proof of Theorem 3

We organize the proof as follows: we first prove an intermediate result (Lemma 6) and split the proof of the bounds in (8)
and (9) in two, where the latter can be seen as a refinement of (8) given the additional assumption that Z := Zthl o Ming N ;
is independent of each s;.

Throughout the proof we use the following notation for clarity:

Hp = maxny,; Ly =minmn;. (43)

Lemma 6. Assume that f is M-smooth, lower-bounded by some f* (i.e. f* < f(w) for all w € R?), and that there exists a
constant G, such that ||V fs(w)||, < Ge forall s € S and w € R?, and let Gy be a constant such that ||V fs(w)| < Go

forall s € S and w € R
Consider any optimization method that performs updates following

loo

Wiyl = Wy — Qg - N O My, (44)

where we further assume assume that for all t € N we have oy > 0, 814 = % for some 1 € [0,1), and 0, ; > 0 for all
i€ [d].
If n; is independent of s, forallt € N, i.e. P(n; = 1,5, = 8) = P(n; =n)P(s; = s) foralln € R4, s € S, then

T T T
1
D Ly ||V f(w)]* < =5 <Z (f(we) =By, [f(wis)]) + D e iGa [mi—1 © el
t=1 L\ =1 t=1
(45)
M & )
+ 5 Y afE,, [lme o mil] ) :
t=1
forall T € N and all possible sample sequences (s1,...,st) € ST.
Proof. We start from the assumption that f is M -smooth, which yields
M 2
Flwesr) < fwe) +(VF(we), wesn —we) + o fJwers —wel|” (46)
Plugging the update expression w41 = wy — ay - M © My,
a?M
fwegr) < f(we) = o (Vf(we), me ©ne) + t2 e © el . 47
Now, taking the expectation over the random sample s; € S, we get
OétQM 2
E,, [f(wes)] < fw) = acs, [(VF(we),me ©me)] + “E=E, [llme © mil?] (48)

where we used the fact that w; and «; are not functions of of s; — in particular, recall that w; is deterministically computed
from (s1,...,8¢-1)-
Using the assumption that 7, is independent of s; and applying Lemma 5, we get

Ey, [f(wir1)] < flwe) — ae(1 = B1)Le |V f(w)l|” + aeBriGa [Ime—1 @ ne|
2 M
S, [lme o m?]

(49)
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which can be re-arranged into

1
a Ly ||V f (w)||* < - <f(wt) —Es, [f(weg1)] + a1 B1,2G2 [me—1 © ne|
) (50)
a; M
+3E¢Mmﬁ)
where we used the assumption that 8; € [0, 1), hence 1 — 8; > 0 which was used to divide both sides of the inequality.
Now, summing overt = 1to T,
T T
ZatLt IVF( wt)\ <Z se [f(weg1)]) + Zatﬂ1,tG2 [me—1 © mell
t=1 t=1 t=1 51
r O[2M 2
+Y R, [Imonl] ).
t=1
which yields the desired result.
O
D.1. Proof of the first guarantee (8)
Proof. We start from the bound given in Lemma 6:
T T
Z oLy ||Vf(wt)| < <Z (we) — Eg, [f(wes1)]) + Z af1,:Ga ||me—1 © el
t=1 t=1 t=1 . (52)
M
+2Zﬁ&mw@mﬂ)
t=1
Now, using Lemma 3 to upper bound both ||m:—1 ® n:|| and ||m; © n:|| by GaHy,
T T
Z ;L |V £ (wy)|° S 1z (Z so [f(wig1)]) + Z a1, G5 Hy
t=1 t=1 t=1 (53)

T
M
M zacﬂ) ,

where we used that Eg, [Hf] = H? since H; is deterministically computed from 7;, which in turn is independent of s;.
Next, from the assumption in Theorem 3 that there are positive constants L and H such that L < 7, ; < H for all
t € N, i € [d] and sample sequences (s1,. .., St), it follows that

L<L;=minn,; and H > H;=maxn.,

i€ld] i€[d]
for all t € N, therefore

T T

L Z S ||Vf(wt)| S — <Z o [f(wii1)]) + G3H Z ai B
t=1 t=1 t=1 . (54)
MGEH? a2>
2 e
t=1
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Dividing both sides by L > 0 and letting a; = o/ /v/T yields

T o T
E, H
; IV f(wy)||* < (= 61 (g (wy) = Es, [f(wii1)]) + G3 Z 7 -
MG2H? - o
LT )
=1
and, rearranging and using the fact that
= L gt <98, VT ,
Zﬂu &f};wﬂl/ -t < 25,
which implies that Ethl %ﬁl,t < 201, we get
T
o= ﬂ1 <Z se [F(wesn)]) + 20/ 51 G3H
=t (56)
a’QMG§H2>
+ .
2
Now, taking the expectation over the full sample sequence (s1,. .., s7) yields
T
[ Viw)P] < 7 (Z F(w)] = E [f(we)]) + 20/ 1G3H
=t (57)
a'2MG§H2>
+— .
2
Note that, by telescoping sum,
T
D E[f(w)] = E[f(wi1)] = E[f(w1)] = E[f(wr41)] < fw1) = f*, (58)
t=1

where the last step follows since w; (the parameters at initialization) is independent of the drawn samples, and also from the
assumption that f* lower bounds f.
Combining the above with (57) and dividing both sides by o’ - VT,

T e IO T2
= E [ ] < Lﬁ(i_m)c(wi, ! +251G§H+C“M§2H>,. (59)
t=1

M

2
Finally, we will use Young’s inequality with p = 2 and the conjugate exponent ¢ = 2, which states that 2y < %- 4- %- for
any nonnegative numbers x, y.
In that context, let

1
T = and y=+vVo'H, (60)
Vo
which yields
P 1 1772
and hence )
261G2 - H < 51G +2B,G3-o’H?. (62)




Plugging the above in (59) yields

T
1 1 231G2 + - fF G2(M +2
= E (V)] < BT 2Ty e G200 ) (63)
T — LVT(1 - By) a 2
Verifying that the above is O ( Vi ( +o/H 2)) in terms of T, o/, L and H finishes the proof.
O
D.2. Proof of the second guarantee (9)
Proof. As before, we start from Lemma 6, which states that
T T
Z ar Ly |V fwy)]|* < (Z (wy) = Bs, [f (wer)]) + 3 auBriGa [mi—y © |
t=1 t=1 t=1
e (64)
+ 5 D aZEs, [l © mil?] ) .
t=1
We then invoke Lemma 3 to upper bound ||m;_ ® 1;|| by GoH; and |[m; @ 1¢]| by G ||7:]|:
T T T
Z o Ly ||Vf(wt) S <Z (wy) — Eg, [f(wig1)]) + Z Oétﬁl,tG%Ht
t=1 t=1 t=1 (65)

T
M 22 2
+ 5 D ofGE, [ }>.

Next, define the unormalized probability distribution p(t) = ayLy, so that p(t) = p(t)/Z with Z = Zthl p(t) =
ZtT:l ai Ly is a valid distribution over ¢ € {1,...T'}. Dividing both sides by Z yields

4 .1 L aMGEE,, [|n’]
S o) IVF @) < e S| Flwe) = Be, [f(wis)] + aeBuG3H, + (66)
t=1 Z(1-p) 2
Now, taking the conditional expectation over all samples S given Z:
T T
2
E |3 p(0) IV 0)? 2| € s (3 (B L wl2] ~E By, [ wi1)]12])
t=1 t=1
T a? MGZE,, |||n:|”
+ZE atﬁl,tGSHmL 2 [ ]’Z )
t=1
T
< ZA=E fwe)|Z] = E [f(wi11)|Z]
1—51 (; ) (67)

_ aiMG? 2, ]
+ZE Oétﬁl,tggHt—l— t—oo”nt”’Z )

2

1 *

= 205 (flw) -1
n

+ 5 E (B G3H; + wp )
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where in the second step we used E [Es, [-] | Z] = E [-|Z] which follows from the assumption that p(Z|s;) = p(Z), and the
third step follows from telescoping sum and the assumption that f* lower bounds f.
Then, taking the expectation over Z and re-arranging:

T 2
w) = f* 2 a; MGZ, |Inell
|V £ (wy) <E =) 4 +GoH + ————— || . (68)
[ZP IV £ (we) | (1_51 ;( T $1,GoHy 5
Setting $; = 0 for simplicity yields
T 2
1 fQwy) — f* o MGZ, el
Zp JIVFw)ll"| <E |- ; ( s : (69)

Now, let oy = o} //T

T T 2
1o [ flwn) = f* 0P MG ||
E 2l <E|= ¢ =
;p@) IV £ ()l ] < ZZ( T
B - - (70)
1 1
=77 B |5 3 (Flw) - 4 3aPMGE )
t=1 i
Now, recall that Z = S/ oy L; = s SO, a} Ly, hence
L[S fwn) = £+ 3o MG ||| ]
Zp VIV € == E —
VT D=1 Lt i 1)
col L g|Zeittof nl’
_— T .
\/T thlaéLt

Finally, checking that -7, p(1) [V £ (w)||* = Eqpis) |97 (we)|]:

1 S Lo
E gpr |[Vf(w)’| <O|—= E|== 17 : (72)
2B 115) { ' } VT S ALy

Recalling that L; = min; 7; ; completes the proof. O

E. Full Statement and Proof of Theorem 2

We organize the formal statement and proof of Theorem 2 as follows: we first state a general convergence result for Adam
which depends on the step-wise adaptivity parameter ¢; and the learning rates «; in Theorem 5, and then present a Corollary
that shows how a O(1/+/T) rate follows from such result (Corollary 6). This section proceeds the proof of Theorem 3
(Appendix D) as the proof presented here is more easily seen as a small variant (although overall simpler) of the analysis given
in the previous section. Steps which also appear in the proof of Theorem 3 are not necessarily described in full detail, hence
the following arguments can be better understood with the previous section in context.

Throughout the proof we use the following notation for clarity:

Hi = maxny,; Ly =minmn; . (73)

Theorem 5. Assume that f is smooth and fs has bounded gradients. If ; > €;_1 > 0 for all t € [T, then for the iterates
{wy,...,wr} produced by Adam we have

9 ]‘+Zt1 1(1+at+et—et 1)
E ||IVf@w)?| <0 i , (74)
t=1 T+er—1

where wy is sampled from p(t) o< z—F-—.
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Corollary 6. Setting e, = O(TP'tP2) for any py,ps > 0 such that py + py > % (e.g ¢ = OWT), e =
O(vt)) and oy = © (%) on Theorem 5 yields a bound of O(1/\/T) for Adam.

Proof. Similarly to the proof of Theorem 3, we plug the update rule w41 = w; — ay - 1, @ My in

Flwes) < Flwe) + (9 Fwe), wess = we) + - s — el

yielding
oZM
f(wi1) < flwe) — e (Vf(we), me © ne) + t2 l[me @ el -
By Lemmas 3 and 4, we have
2 MG? 2
fwigr) < flwe) —ae(1 = Big) (Vf(we), g ©ne) + atﬁl,tGSHt + %’O”m” .

Now, note that we can write

(Vf(we), gt ©ne) = (VF(we), 9t ©ne—1) + (Vf(we), 9¢ © (e —me-1))
therefore we have that

a? MGZ, ||n:|”

Fwir) < flwe) — (1 — Brg) (Vf(we), ge @ ne—1) + a1+ GaHy + >

- at(l - Bl,t) (Vf(wt),gt © (77t - 77t—1)>
aZ MG, |l

< flwy) — (1 = Bre) (VF(we), g @ me—1) + B, G5 Hy + 5

+ar (1= Bre) (Vf(we), g¢ © (ne — me-1))]
We will proceed to bound [(V f (w;), g¢ ©® (n: — 1n¢—1)}|. By Cauchy-Schwarz we have

(VF(we), 90 © (e = nea DI < IV F(wi)ll - llge © (ne = 1)l < G2 llge © (e = me—a)l

1/2
2)

and moreover

d
gt © (e — ne—1)|| = <Z 92 il — -1
i=1

4 1/2
< <Z Ggo|77t,i - 77t1,i|2>
i=1
= Goo ne = -1,

therefore we get

a? MGZ, ||n.|”

Flwigr) < flwe) — (1 = Bre) (Vf(we), g © me—1) + Oétﬂl,tGgHt + 9

+ (1 — B1,4)GooG2 | — ne—1]|

Using the fact that 7,1 is independent of s, and that E;, [g;] = V f (w;), taking expectation over s; yields

a2 MG2.E,, [

(75)
(76)

(77)

(78)

(79)

(80)

81)

2
]

Es, [f(weg1)] < flwe) — au(1 = Bre) (Vf(wy), Vf(we) © ne—1) + a1 G3Es, [Hi] +
+ (1 = B1t)Goo G2Es, [|Ine — me—1]]]

2

3MGLE,, ||m’]

< flwe) — a(1 = B) [V (w)||” Loy + ufrG3Es, [Hy] + 5

+ (1 = 1)GocGoEs, [||11: — me—1]l]
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where in the second step we used 31 ; < /31 and

d

(Vf(we), Vflwe) ©ne—1) ZVf )ine— 112m1n7]t 1]va ); = Li1 |V f(w)|?

i=1

Re-arranging,

) ) o MGLE,, [l
aeLeor (1= B) [V F(wo)ll* < f(we) = Bs, [f(wn)] + auB1:G3Es, [Hi] + ; (83)

+ai(1 = B1)GooGoEs, [t — me-1ll] 5

Next, we will bound L;_1, Hy, ||7¢]|, and ||n: — m:—1|. Recall that, for Adam, we have

1
uis \/1)7_’_ o
and since v; ; < Ggo, we also have that
1 1
Goo + € et = €
From the above it follows that
1
Li_
Goo + €1 =t
and
1
Ht > ]
€t
which also implies that ||7;|| < ‘6(
As for ||n; — n;—1|, check that
1 1 G — € G — €
Neg — Ne—1,i| < - _ Ot an < m+;t ct L (84)
€1 Goo + € Gooet—l —+ €1€4_1 €1

where we used the assumption that ¢; > ¢;_1. The above implies that ||n; — n;—1|| < Vd - %
t—1

Applying the bounds given above to (83) yields

oy 1e) o MdG2
o o (L= BNV |” < flw) = By, [fwinn)] + BraGi - + ==
fe’e] + €t—1 €t 6t (85)
Far(1 — BUVAG G - w
t—1

o= so that p(t) = p(t)/Z with Z = Y, j(t) =
Zt | 45— is a valid distribution over ¢ € {1,...T'}. Adopting this notation and dividing both sides by Z(1 — 1 ):

Next, define the unormalized probability distribution p(t) =

1 QMdGQ
PO IV £ ()P £ s (Fwn) = B, [f(wesn)] + BruGr + e
Z(]- - 51) €t €7 (86)
+ (1 — B1)VdGoo Gy - w> )
t—1
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Taking the expectation over all samples and summing over ¢ yields

) ; T ar  aiMdG?
;p(t)E {Ilvf(wt)llﬂ <705 ; (E [f(we)] — E [f(wesr)] + 51,&%?; N %
(1 — B1)VAG oG - m)
€1 -
! Oy OzQMngO
< g [ = 3 (gt

+ ay(1 — B1)VdG oGy - -

€1

Goo + €6 — €1
€t1 €t 1)]

where we used the fact that ZtT:l E [f(w)] — E[f(wis1)] = fwr) — E [f(wr41)] < f(wr) — f* by telescoping sum and
where f* lower bounds f.

For simplicity, assume that 51 ; = 0 (or, alternatively, let 31 ; = % and apply Young’s inequality as in the proof of
Theorem 3). In this case, we get

T T
1 . Q. 2 41— . _
tz:; p(t)E [va wy)|| } m [f(wl) -+ ; 2 (athGoo +(1 Bl)ﬂGooGQ (Goo + €t —€1-1) )} )
(88)
and recalling that Z = 30/, & G4 vields
I (R AR Dt (a MdG?, + (1 — f1)VAdGeGa - (Goo + € — eH))
Evero [E [IVF0)]] < T
- P t=1 Goo+et 1
(39)
1) L+ Y 1 (Lot e —e)
< ;
Et 1 lJrEt 1
which completes the argument. O

F. Details on Hyperparameter Optimization

This section contains additional details on the experiments performed in Section 7. We use Gradientless Descent (GLD
[10]), a recently-proposed zeroth-order optimization method to tune both « and € for Adam, AMSGrad and AvaGrad. The
search space consists of 21 values for o and 21 values for e, yielding a discrete search space composed of 441 hyperparameter
settings. We use a projected isotropic Gaussian constrained to [0, 21] x [0, 21] for sampling: we first sample (z,y) and then
round both x and y to the nearest integer to associate the continuous samples to elements in the discrete 21 x 21 search space.
We use a search radius of 4 and 3 samples per iteration.

For the coordinate-wise hyperparameter optimization, we run GLD separately on « and ¢, in an alternating fashion. In
practice, this amounts to using univariate Gaussians during sampling, where in one iteration the distribution is over « only, and
in the other it is over e. We denote GLD when run in this manner by “CGLD”, standing for coordinate gradientless descent.
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