
Appendix
A. Further Details on IEM Objective

The IEM objective in Equation 5 relies on adopting spe-
cific `-norms to approximate the entropy terms in the co-
efficient of constraint. In particular, we rely on two main
approximations, which we describe in detail below.

First, for the conditional entropy of the predicted fore-
ground F̂φ given the predicted background B̂φ (and vice-
versa), we have
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where the approximation adopted in the last step amounts to
assigning a `1-Laplace distribution with identity covariance
to the conditional pixel probabilities:
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Second, for the marginal entropies of the predicted fore-
ground and background, we adopt

H(F̂φ) = H (X � φ(X))

= −EX [logP (X � φ(X))]

≈ EX [‖φ(X)‖] ,
(14)

where ‖φ(X)‖ can be seen as any `p norm: since φ(X) is
binary, we have that ‖φ(X)‖p = ‖φ(X)‖q for any p, q ∈
[1,∞). Since modelling marginal distributions over images
is known to be hard, we opt for an assumption-free approach
and assume that pixel values are uniformly distributed, i.e.
the approximation in the last step above corresponds to the
assumption

P (X � φ(X)) = U(k)‖φ(X)‖ = k−‖φ(X)‖ , (15)

where k captures the number of possible values for a pixel,
e.g., 2553 for RGB images where each pixel channel is en-
coded as 8 bits. Note that ‖φ(X)‖ in the equation above
represents the number of 1-valued elements in φ(X), hence
it can be taken to be any `p norm (or any other function that
matches this definition for binary inputs).

Table 4. Ablation experiments on CUB and Flowers. Number in-
dicate IoU of masks produced by IEM.

CUB Flowers

Default parameters 52.2 76.8
No regularization on fore/back deviation 50.6 68.0
No smoothing on projection 47.0 75.7
Updates not restricted to mask boundary 42.8 76.6

Table 5. CUB results with different variants of the proposed IEM
objective, each corresponding to different assigned distributions
for conditional and marginal pixel distributions.

Objective (first term) IoU DICE

‖M�(X−ψK(X�M,M))‖1
‖M‖ (Equation 8) 52.2 66.0

‖M�(X−ψK(X�M,M))‖2
‖M‖ (Assumption 1) 51.7 65.6

‖M�(X−ψK(X�M,M))‖1
‖X�M‖1 (Assumption 3) 51.8 65.6

‖M�(X−ψK(X�M,M))‖2
‖X�M‖2 (Assumptions 1+2) 51.2 65.1

B. Analysis on Training Components of IEM

To understand the effect of IEM’s components, we con-
duct ablation experiments on CUB and Flowers. We follow
the same setup adopted for experiments in Section 4, run-
ning IEM for 150 iterations on the test set of each dataset.

First, we experiment with removing the regularization on
foreground and background deviation (Equation 11) by set-
ting λ = 0 in LIEM . Second, we remove the smoothing
procedure after mask updates. Third, we allow mask up-
dates at pixels other than the boundary.

In Table 4, we report IoU of produced masks for each
experiment. Compared to the results with default parame-
ters, mask quality drops in all three ablation experiments,
suggesting that these components are important for IEM to
achieve the best results. The regularization seems particu-
larly important for Flowers, since it promotes homogeneous
colors in the foreground and the background when the im-
ages have a clear color contrast between the two. Smooth-
ing masks and limiting updates to the mask boundary seems
more important in CUB, where the images have more com-
plex backgrounds, as they prevent the bird segmentations
from including other objects (e.g., branches, grass).

C. Analysis on Approximations in IEM

As discussed in Appendix A, our proposed IEM ob-
jective adopts two key approximations for the conditional
and marginal entropies in the original coefficient of con-
straint minimization problem in Equation 3. Although the
Laplacian approximation for conditional pixel probabilities
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is popular in the computer vision literature, for example in
papers on inpainting [71, 70] and image modelling [30, 75],
it is unclear whether it is the optimal choice for our setting.

Additionally, the uniform prior over pixel values that
we adopt to approximate marginal entropies can be seen
as being overly simple, especially since different priors are
more commonly adopted in the literature e.g., zero-mean
isotropic Gaussians.

To investigate whether our approximations are sensible,
we consider three variants of the proposed IEM objective,
each being the result of different approximations for the im-
age entropies. In particular, we consider:

1. Assuming that the conditional pixel probabilities fol-
low a isotropic Gaussian (instead of a `1-Laplacian),
which yields the approximation

H(F̂φ|B̂φ)

≈ E
[∥∥∥X � µ(X)− ψ(X � φ(X))

∥∥∥
2

]
,

(16)

which in practice amounts to adopting the `2 norm in-
stead of `1 in the numerators.

2. Assuming that the marginal foreground/background
distributions are zero-mean isotropic Gaussians, which
results in

H(F̂φ) ≈ E [‖X � φ(X)‖2] . (17)

3. Assuming that the marginal foreground/background
distributions are zero-mean `1-Laplacians with iden-
tity covariance, yielding

H(F̂φ) ≈ E [‖X � φ(X)‖1] . (18)

We repeat our experiments on the CUB dataset, follow-
ing the same protocol described in Section 4, i.e. masks are
optimized for a total of 150 iterations to maximize the cor-
responding objective, and ψK is the same fixed inpainter as
in our original experiments.

Table 5 summarizes our results, showing that although
our chosen approximations yield the best segmentation per-
formance measured in IoU and DICE score, all variants of
the IEM objective offer comparable results. This suggests
that our proposed framework does not strongly rely on our
particular distributional assumptions (or, equivalently, to the
adopted norms for the inpainting objective), offering a gen-
eral approach for unsupervised segmentation.

D. Analysis on Inpainting Component
The inpainter we adopted for all experiments in Section 4

is significantly simpler than inpainting modules typically
employed in other works, consisting of a single 21 × 21

Table 6. Comparison between our simple inpainter and variants
of the Gated Convolutional (GatedConv) model proposed in Yu et
al. [71], in term of quality of masks produced on CUB. Remov-
ing components from GatedConv, such as removing its refine-
ment phase during IEM (‘GatedConv, coarse outputs’) and training
without adversarial losses (‘GatedConv, `1 only’) deteriorates its
inpainting quality but results in better IEM segmentations.

Inpainting Module IoU DICE

Simple (Equation 7) 52.2 66.0
GatedConv [71] 40.3 55.8
GatedConv, coarse outputs [71] 41.6 56.8
GatedConv, `1 only [71] 43.7 59.0
GatedConv+Fine tuning, `1 only [71] 41.7 57.1

convolution with a Gaussian filter. Such module has the
advantage of having a small computational cost and not re-
quiring any training, making it suitable for a learning-free
method.

Here, we show that such simple inpainting module also
yields better segmentation masks when compared to more
sophisticated variants. Table 6 shows the quality of masks
produced by IEM when adopting the inpainting component
proposed in Yu et al. [71], which consists of gated convolu-
tions and contextual attention, and is trained with the `1 loss
along with an adversarial objective produced by a patch-
wise discriminator (‘GatedConv’ entry in the table).

‘GatedConv (coarse outputs)’ refers to IEM results when
taking the coarse outputs of GatedConv to compute the
IEM objective: more specifically, we take the ‘GatedConv’
model (trained with both the `1 and adversarial loss) but
only pass the foreground/background image through the
first half of the network, which generates a coarse inpainted
image that precedes the contextual attention layers (see Fig-
ure 3 of Yu et al. [71] for reference). ‘GatedConv (`1 only)’
refers to the GatedConv model trained only with the `1
loss (i.e. without SN-PatchGAN), with coarse outputs only.
All GatedConv models were pre-trained on the whole CUB
dataset with free-form masks [71] and then held fixed dur-
ing IEM. When evaluated in terms of IoU and DICE, the
quality of masks produced by IEM deteriorates monotoni-
cally with the complexity of the inpainting component: the
original GatedConv model yields the lowest segmentation
scores, which improves if IEM is run against its interme-
diate, coarse inpaintings, and training the network without
contextual attention or the adversarial loss yields the best
segmentation results other than ours.

We also evaluate how fine-tuning the inpainter during
IEM, i.e. optimizing the inpainter with masks currently pro-
duced by IEM, affects the quality of segmentation masks.
Table 6 shows that it also deteriorates the quality of masks
produced by IEM (compare last two rows).
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