
CASTing Your Model:
Learning to Localize Improves Self-Supervised Representations

(Supplementary)

Ramprasaath R. Selvaraju1* Karan Desai2∗ Justin Johnson2 Nikhil Naik1

1Salesforce Research, 2University of Michigan
{rselvaraju,nnaik}@salesforce.com {kdexd,justincj}@umich.edu

Appendices
A. Introduction

This supplementary material is organized as follows.
We first provide pseudo-code for our approach, Contrastive
Attention-Supervised Tuning (CAST), showing how it can
be easily applied on top of any contrastive self-supervised
approaches. We then provide a sample of the kinds of ran-
dom crops that are generated by our saliency-constrained
random cropping approach and compare them to regular
random crops used by self-supervised learning methods.
We then provide randomly sampled qualitative examples
that show that CAST-trained feature representations obtain
better grounding, both on their own and when finetuned on
downstream tasks, such as image classification. We then
show qualitative examples from the Background Challenge
evaluation reported in Section 4.3 of the main paper.

B. Random Crops

As shown in Fig 1 of the main paper, when training with
complex scene-level images, models often receive a noisy
training signal—random crops from an image may contain
different objects, or none at all. To fix this problem, we
design a random crop transform that generates input crops
constrained to overlap with the saliency map. In Figure S1,
we show how our Saliency-Constrained Random Crops dif-
fer from unconstrained random crops used in MoCo and
other contrastive approaches.

B.1. SSL Grounding

Similar to Section 4.4 in the main paper, we use Grad-
CAM to evaluate the visual grounding ability of a con-
trastive SSL model trained with CAST and its effect on
grounding in downstream tasks. Randomly sampled exam-
ples in Figure S2 show that the CAST-trained model seems
to learn semantic category-specific feature representations,

*Equal Contribution

which allows it to look at objects of interest while perform-
ing query-key matching, and avoid learning spurious corre-
lations.

B.2. Grounding of CASTed models on Downstream
tasks

Fig. S3 shows randomly sampled qualitative examples
showing how training with CAST also leads to improve-
ments in grounding in downstream tasks. Notice in Fig. S3
(a, b) how the CASTed model looks at the whole extent of
the object regions. We can also see in Fig. S3 (c) how in
order to predict “Table Lamp”, the MoCo pretrained model
also looks at the table where as the CASTed model only
looks at the relevant lamp regions. In Fig. S3 (f), in addi-
tion to not predicting the correct class “French Horn”, the
MoCo pretrained model is unable to localize the category,
where as the CASTed model correctly predicts and attends
to the “French Horn”.

B.3. Qualitative examples from Background Chal-
lenge

The Backgrounds Challenge [1] (Sec 4.3 of the main
text) aims to assess the background-robustness of image
classification models by measuring their accuracy on im-
ages containing foreground objects superimposed on vari-
ous background types (see [1] for details on dataset con-
struction). Since CAST forces a model to attend to salient
objects during learning, training with CAST also leads to
models learning less spurious correlations, as seen in qual-
itative examples (Fig. S4). For example, in Fig. S4 (b),
when the background corresponding to the sky is replaced
by water, the MoCo pretrained model changes its decision
from “Bird” to “Fish” indicating that the model was using
spurious correlations associating water with fish. However
the model pretrained with CAST, still correctly predicts the
“Bird” class, indicating that it relies more on the foreground
object of interest while making decisions.

1

Algorithm 1 Pseudocode of CAST applied on MoCo, PyTorch-style. CAST modifications highlighted in orange.

f_query, f_key: Encoder networks for query and key
queue: Dictionary as a queue of K keys (CxK)
m: momentum
t: temperature

Initialize key network (momentum encoder) parameters as query network.
f_key.params = f_query.params

Load a mini-batch of images and saliency maps of N instances.
for (x, s) in dataloader:

Generate saliency-constrained random crops (+ other data augmentations).
x_q, s_q = aug(x, s) # For MoCo: x_q = aug(x)

x_k, s_k = aug(x, s) # For MoCo: x_k = aug(x)

--
Compute MoCo contrastive loss:
--

Query and key feature vectors.
q = f_query.forward(x_q) # shape: (N, C)
k = f_key.forward(x_k) # shape: (N, C)
k = k.detach() # No gradient to keys.

Positive and negative logits.
logits_pos = bmm(q.view(N, 1, C), k.view(N, C, 1)) # shape: (N, 1)
logits_neg = bmm(q.view(N, C), queue.view(C, K)) # . shape: (N, K)

logits = cat[logits_pos, logits_neg], dim=1) # . . . shape: (N, 1+K)

MoCo contrastive loss (Positive labels at index 0).
labels = zeros(N)
loss = CrossEntropyLoss(logits/t, labels)

--
Compute CAST loss:
--

Generate masked key and forward through momentum encoder.
x_km = mask_op(x_k, s_k)

km = f_key.forward(x_km) # shape: (N, C)

km = km.detach() # No gradient to masked keys.

Compute dot product between query and masked key.
dot_prod = mm(q.view(N, 1, C), km.view(N, C, 1)) # . shape: (N, 1)

Get activations from conv5 layer of query network.
conv5_acts = lookup(f_query.params) #. shape: (N, 7, 7, 2048)

Compute gradients of these conv5 activations wrt this dot product.
conv5_grads = autograd.grad(dot_prod, conv5_acts) #. shape: (N, 7, 7, 2048)

Compute Grad-CAM map from these gradients.
gradcam_map = compute_gradcam(conv5_grads) # shape: (N, 7, 7)

CAST Loss: conv5 Grad-CAM and query saliency map (maximize similarity).
cast_loss = CosineSimilarityLoss(gradcam_map, resize7x7(s_q))

loss += lambda * cast_loss

loss.backward()

SGD update for query network.
update(f_query.params)

Momentum update for key network.
f_key.params = m * f_key.params + (1 - m) * f_query.params

Update dictionary (do not add masked keys).
enqueue(queue, k) # Enqueue the current minibatch
dequeue(queue) # Dequeue the earliest minibatch

References
[1] Kai Xiao, Logan Engstrom, Andrew Ilyas, and Aleksander

Madry, “Noise or signal: The role of image backgrounds in
object recognition,” arXiv preprint arXiv:2006.09994, 2020.
1

2

(a) (b)

(c) (d)

Figure S1: Saliency-constrained random crops always have salient regions that are overlapping between two randomly sam-
pled crops. This can be compared to unconstrained random crops used in MoCo. Notice how in the random crops of (a),
the stop sign (salient region) is missing from query, however query and key crops from our saliency-constrained random
cropping approach contain a part of the stop sign. Similarly in (b) the salient region corresponding woman is missing from
one of the crops, and in (c), the salient regions corresponding to the surfer is not present in both the query and key crops.
The crops which do not contain overlapping salient regions (top-row in each subfigure) tend to provide noisy training signal
to contrastive approaches forcing them to incorrectly produce similar features for crops containing varying context, e.g., stop
sign and sky in (a), surfer and waves in (c), etc. Saliency-constrained random cropping mitigates this problem.

3

Figure S2: CAST improves visual grounding of the contrastive self-supervised feature encoder. Column (d) shows the
saliency map according to the query crop (b). Grad-CAM visualizations in columns (e, f) show the query regions that MoCo
and MoCo + CAST models rely on, in order to match the key crop (c). Finally, the MoCo and MoCo + CAST models rely
on query regions (h) and (i) to match with the masked key representation (g). Notice how in all the examples, models trained
with CAST look at the salient objects of interest to match the query with the key or the saliency-masked key.

4

(a) (b)

(c) (d)

(e) (f)

Figure S3: Downstream task Grounding. Qualitative comparison of Grad-CAM attention maps for the correct class from
fully supervised networks and the self-supervised networks (MoCo and MoCo + CAST) on the Imagenet-1k classification
task showing cases where the CAST fixes the mistakes made by MoCo model. We can see that CASTed models tend to look
at the full extent of the object and less at the background regions. Note that even for incorrect predictions, Grad-CAM maps
are computed for the ground-truth class.

5

(a)

(b)

(c)

(d)

Figure S4: Backgrounds-challenge. Models pretrained with CAST are less likely to rely on background correlations for
classification. Notice how in (a), the MoCo pretrained model incorrectly predicts “Reptile” when the grass is changed to
a background from a reptile class, while the CAST pretrained model still correctly predicts “Dog”. Similarly in (c), when
chairs are introduced in the background, the MoCo pretrained model changes its prediction from “Reptile” to “Instrument”,
indicating that the model relies on spurious correlations to predict the class of interest. The CAST pretrained model still
correctly predicts “Reptile.”

6

