
Supplementary Material: Probabilistic 3D Human Shape and Pose Estimation from Multiple
Unconstrained Images in the Wild

This document provides additional material supplementing
the main manuscript. Section 1 contains details regarding
training data generation, evaluation protocols and proba-
bilistic shape combination. Section 2 discusses qualitative
results on the SSP-3D [3] and 3DPW [4] datasets, as well
as providing examples from our private evaluation dataset
of tape-measured humans.

1. Implementation Details

Training. Table 1 lists the data augmentation methods used
to bridge the synthetic-to-real domain gap during synthetic
training data generation, along with associated hyperparam-
eter values. Table 2 lists additional hyperparameter values
not given in the main manuscript.
Uncertainty Visualisation. Figures 2 and 3 in this sup-
plementary material, as well as several figures in the main
manuscript, visualise per-vertex prediction uncertainties.
These are computed from the predicted SMPL [2] pose and
shape parameter distributions by i) sampling 100 SMPL pa-
rameter vectors from the predicted distributions, ii) passing
each of these samples through the SMPL function to get the
corresponding vertex meshes, iii) computing the mean loca-
tion of each vertex over all the samples and iv) determining
the average Euclidean distance from the mean for each ver-
tex over all the samples, which is ultimately visualised in
the scatter plots as a measure of uncertainty.
SSP-3D Evaluation Groups. SSP-3D [3] contains 311 im-
ages of 62 subjects, where subjects can have a different
number of associated images. To evaluate our multi-input
shape prediction method, the images for each subject were
split into groups of maximum size equal to N , where N
ranged from 1 to 5. For example, if a subject has 6 associ-
ated images and N = 4, the images would be split into two
groups with 4 and 2 images respectively. Splitting/group
assignment was done after random shuffling of the images
to prevent sequential images with similar poses/global ori-
entations from always being in the same group.
Tape measurement normalisation by height. There is an
inherent ambiguity between 3D subject size/scale and dis-
tance from camera. Since the true camera location relative
to the 3D subject (and the focal length) is unknown, it is not
possible to estimate the absolute size of the subject given
an image. This is accounted for by the PVE-T-SC [3] met-
ric used to evaluate shape prediction accuracy on synthetic
data and SSP-3D in the main manuscript. For our evaluation
dataset of tape-measured humans (see Figure 1), scale cor-
rection is done using the subject’s height. The height of the
predicted SMPL human can be determined by computing
the neutral-pose mesh (i.e. pose parameters/joint rotations

Augmentation Hyperparameter Value

Body part occlusion Occlusion prob. 0.1
2D joints L/R swap Swap prob. 0.1
Half-image occlusion Occlusion prob. 0.05
2D joints removal Removal prob. 0.1
2D joints noise Noise range [-8, 8] pixels
2D vertices noise Noise range [-10, 10] mm
Occlusion box Probability, Size 0.5, 48 pixels

Table 1: List of synthetic training data augmentations and
their associated hyperparameter values. Body part occlu-
sion uses the 24 DensePose [1] parts. Joint L/R swap is
done for shoulders, elbows, wrists, hips, knees, ankles.

Hyperparameter Value

Shape parameter sampling mean 0
Shape parameter sampling var. 2.25
Cam. translation sampling mean (0, -0.2, 2.5) m
Cam. translation sampling var. (0.05, 0.05, 0.25) m
Cam. focal length 300.0
Proxy representation dimensions 256× 256 pixels
2D joint confidence threshold 0.025

Table 2: List of hyperparameter values not provided in the
main manuscript.

set to 0) and measuring the y-axis distance between the top
of the head and bottom of the feet. The ratio between the
subject’s true height and this predicted height is then used
to scale all the predicted body measurements derived from
the neutral-pose mesh.
Probabilistic shape combination. The main manuscript
presents our method to probabilistically combine individual
body shape distributions, p(β|Xn) for n = 1, ..., N , into
a final distribution p(β|{Xn}Nn=1). The full derivation is
given below:
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The first and third lines use Bayes’ theorem. The second
line follows from the conditional independence assumption
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