
Supplementary Material: Probabilistic 3D Human Shape and Pose Estimation from Multiple
Unconstrained Images in the Wild

This document provides additional material supplementing
the main manuscript. Section 1 contains details regarding
training data generation, evaluation protocols and proba-
bilistic shape combination. Section 2 discusses qualitative
results on the SSP-3D [3] and 3DPW [4] datasets, as well
as providing examples from our private evaluation dataset
of tape-measured humans.

1. Implementation Details

Training. Table 1 lists the data augmentation methods used
to bridge the synthetic-to-real domain gap during synthetic
training data generation, along with associated hyperparam-
eter values. Table 2 lists additional hyperparameter values
not given in the main manuscript.
Uncertainty Visualisation. Figures 2 and 3 in this sup-
plementary material, as well as several figures in the main
manuscript, visualise per-vertex prediction uncertainties.
These are computed from the predicted SMPL [2] pose and
shape parameter distributions by i) sampling 100 SMPL pa-
rameter vectors from the predicted distributions, ii) passing
each of these samples through the SMPL function to get the
corresponding vertex meshes, iii) computing the mean loca-
tion of each vertex over all the samples and iv) determining
the average Euclidean distance from the mean for each ver-
tex over all the samples, which is ultimately visualised in
the scatter plots as a measure of uncertainty.
SSP-3D Evaluation Groups. SSP-3D [3] contains 311 im-
ages of 62 subjects, where subjects can have a different
number of associated images. To evaluate our multi-input
shape prediction method, the images for each subject were
split into groups of maximum size equal to N , where N
ranged from 1 to 5. For example, if a subject has 6 associ-
ated images and N = 4, the images would be split into two
groups with 4 and 2 images respectively. Splitting/group
assignment was done after random shuffling of the images
to prevent sequential images with similar poses/global ori-
entations from always being in the same group.
Tape measurement normalisation by height. There is an
inherent ambiguity between 3D subject size/scale and dis-
tance from camera. Since the true camera location relative
to the 3D subject (and the focal length) is unknown, it is not
possible to estimate the absolute size of the subject given
an image. This is accounted for by the PVE-T-SC [3] met-
ric used to evaluate shape prediction accuracy on synthetic
data and SSP-3D in the main manuscript. For our evaluation
dataset of tape-measured humans (see Figure 1), scale cor-
rection is done using the subject’s height. The height of the
predicted SMPL human can be determined by computing
the neutral-pose mesh (i.e. pose parameters/joint rotations

Augmentation Hyperparameter Value

Body part occlusion Occlusion prob. 0.1
2D joints L/R swap Swap prob. 0.1
Half-image occlusion Occlusion prob. 0.05
2D joints removal Removal prob. 0.1
2D joints noise Noise range [-8, 8] pixels
2D vertices noise Noise range [-10, 10] mm
Occlusion box Probability, Size 0.5, 48 pixels

Table 1: List of synthetic training data augmentations and
their associated hyperparameter values. Body part occlu-
sion uses the 24 DensePose [1] parts. Joint L/R swap is
done for shoulders, elbows, wrists, hips, knees, ankles.

Hyperparameter Value

Shape parameter sampling mean 0
Shape parameter sampling var. 2.25
Cam. translation sampling mean (0, -0.2, 2.5) m
Cam. translation sampling var. (0.05, 0.05, 0.25) m
Cam. focal length 300.0
Proxy representation dimensions 256× 256 pixels
2D joint confidence threshold 0.025

Table 2: List of hyperparameter values not provided in the
main manuscript.

set to 0) and measuring the y-axis distance between the top
of the head and bottom of the feet. The ratio between the
subject’s true height and this predicted height is then used
to scale all the predicted body measurements derived from
the neutral-pose mesh.
Probabilistic shape combination. The main manuscript
presents our method to probabilistically combine individual
body shape distributions, p(β|Xn) for n = 1, ..., N , into
a final distribution p(β|{Xn}Nn=1). The full derivation is
given below:

p(β|{Xn}Nn=1) ∝ p({Xn}Nn=1|β)p(β)

=

( N∏
n=1

p(Xn|β)
)
p(β)

∝
∏N

n=1 p(β|Xn)

p(β)N−1

∝
N∏

n=1

p(β|Xn).

(1)

The first and third lines use Bayes’ theorem. The second
line follows from the conditional independence assumption
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(Xi ⊥⊥ Xj)|β for i, j ∈ {1, ..., N} and i 6= j. This
assumption is reasonable because only the subject’s body
shape is fixed across inputs - hence, the inputs are indepen-
dent given the body shape parameters. The final line follows
from assuming an (improper) uniform prior over the shape
parameters p(β) = 1.

2. Experimental Results
Evaluation using ground-truth vs predicted inputs. The
synthetic training data augmentations listed in Table 1 and
the main manuscript are used to increase the robustness of
our distribution prediction neural network to noisy and oc-
cluded test data, as demonstrated in Figure 3. However,
the synthetic-to-real domain gap still persists, as evidenced
by Table 3, which compares body shape and pose predic-
tion metrics when using ground-truth, synthetic ground-
truth and predicted input proxy representations. A signif-
icant improvement in both body shape and pose metrics is
observed when using synthetic inputs, instead of predicted
inputs. This is mostly because predicted input silhouettes
and 2D joints can be very inaccurate in cases with challeng-
ing poses, significant occlusion or occluding humans, such
that the synthetic training data augmentations are not suf-
ficient. Moreover, synthetic SMPL human silhouettes are
not clothed, while silhouette predictors generally classify
clothing pixels as part of the human body. This is partic-
ularly detrimental to body shape prediction metrics when
subjects are dressed in loose clothing, as can be seen in Fig-
ure 3 (left side, rows 3 and 4), where our method tends to
over-estimate the subject’s body proportions.
SSP-3D qualitative results. Figure 2 shows qualitative re-
sults, particularly focusing on shape prediction, on groups
of input images from SSP-3D [3] corresponding to subjects
with a wide range of body shapes. The first column in
each cell shows the input images in the group. The sec-
ond column shows the predicted SMPL [2] body (rendered)
for each individual image, obtained by passing the mean of
predicted SMPL parameter distributions through the SMPL
function. The third and fourth columns visualise the 3D
per-vertex uncertainty (or variance) in the individual SMPL
shape distribution predictions (in a neutral pose i.e. pose
parameters/joint rotations set to 0). The fifth column shows
the combined body shape prediction, which are obtained
by probabilistically combining the individual shape distri-
butions.

In particular, note the relationship between challenging
poses with significant self-occlusion (e.g. right side, row 4
of Figure 2) and uncertainty in the predicted SMPL shape
distribution.
3DPW qualitative results. Figure 3 shows qualitative re-
sults, particularly focusing on pose prediction, using single-
image inputs from 3DPW [4]. The first column on each
side shows the input images. The second column shows

Figure 1: Example images from our private dataset of hu-
mans with body measurements obtained using a tape mea-
sure or 3D body scanners. The subjects’ body pose, cloth-
ing, surrounding environment and camera viewpoints vary
between images.

the corresponding silhouette and joint heatmap proxy rep-
resentation predictions. The third column shows the pre-
dicted SMPL [2] body (rendered) for each image, obtained
by passing the mean of predicted SMPL parameter distri-
butions through the SMPL function. The fourth column vi-
sualises the 3D per-vertex uncertainty (or variance) in the
SMPL pose and shape distribution predictions (per-vertex
uncertainties are mostly due to pose variance rather than
shape).

Specifically, note the large uncertainties of vertices be-
longing to body parts that are invisible in the image (and
corresponding proxy presentations), either due to occluding
objects, self-occlusion or being out-of-frame. Furthermore,
large uncertainties also occur when the proxy representa-
tion prediction is highly-degraded, such as left side, row 7
of Figure 3.
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Figure 2: Qualitative results on groups of input images from SSP-3D [3]. Black dots indicate left hands. Within each cell: 1st
column is group of input images, 2nd column is predicted SMPL body, 3rd and 4th columns show 3D per-vertex uncertainty
in the SMPL shape distribution prediction, 5th column is the probabilistically-combined body shape. Challenging poses lead
to large shape prediction uncertainty. 3



Figure 3: Qualitative results using single-image inputs from 3DPW [4]. Black dots indicate left hands. On each side: 1st
column is input image, 2nd column is predicted proxy representation, 3rd column is predicted SMPL body and 4th column is
3D per-vertex uncertainty in the SMPL pose and shape distribution prediction. Vertices of occluded and out-of-frame body
parts have higher prediction uncertainties.
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Input 3DPW SSP-3D
MPJPE-SC MPJPE-PA PVE-PA PVE-T-SC

GT Synthetic Silh. + 2D Joint Heatmaps 64.3 45.7 52.9 10.1
GT Silh. + 2D Joint Heatmaps - - 69.9 14.4
Predicted Silh. + 2D Joint Heatmaps 90.9 61.0 71.4 15.2

Table 3: Comparison between ground-truth (GT), synthetic ground-truth and predicted input silhouettes and 2D joints, in
terms of MPJPE-SC and MPJPE-PA (both in mm) on 3DPW [4], as well as PVE-PA and PVE-T-SC (both in mm) on
SSP-3D [3]. Predicted silhouettes are obtained using DensePose [1] and predicted 2D joint coordinates and confidences
(for thresholding) are obtained using Keypoint-RCNN from Detectron2 [5]. Synthetic ground-truth inputs are obtained by
rendering the SMPL [2] body mesh labels given by SSP-3D and 3DPW, using ground-truth camera parameters, into silhouette
and 2D joint input representations.
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