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S1. Complete Training Details

All models are implemented in Pytorch. We use Nvidia

2080Ti GPUs for training. For training and testing on Office-

31 and Birds-31 datasets, we take random crops of size

224x224 for all images, and use random horizontal flipping

as a data augmentation strategy. For Digits, we resize the

images to size 28x28. For creating one training batch, we

use b source and b target samples, where b is set to 124 for

Office-31 and Birds-31 and 120 for Digits.

We adjust the learning rate as ηp “ η0p1 ` αpq´β
, where

p changes from 0 to 1 as training progresses, α “ 10, β “
0.75 and η0 is the initial learning rate, following [1]. More

details including the number of pre-training iterations and

learning rate are presented in Table S1. We use the same

hyperparameters across all the tasks within a dataset. All

source code and trained models will be publicly released.

Office-31 Birds-31 Digits

Initial Learning Rate 0.001 0.03 0.01

no. of Training Iterations 15,000 12,500 25,000

no. of GPUS 3 3 1

no. of pretraining iterations 2800 2800 5000

Co-eff MSC Loss (λ2) 2.0 2.0 2.0

Co-eff Adv. Loss (λ1) 1.0 1.0 1.0

Batch Size 124 124 120

Table S1: Training details for Office-31, Birds-31 and Digits.

S2. Evaluation on VisDA Dataset

We report results of our method on another challeng-

ing dataset, VisDA-2017 [5], which contains source images

from a synthetic domain and target images from real do-

main. The dataset contains roughly 280K images across 12

categories in the training, validation and test domains. In

Table S2, we observe that our method consistently improves

performance on real target data for both DANN and CDAN

backbones, showing the effectiveness of our method over

global alignment strategies for a challenging adaptation task.

For fair comparison with the reported results in previous

works [3, 4], we use ResNet-101 and ResNet-50 for ILA-DA

(with DANN) and ILA-DA (with CDAN), respectively.

Method Synthetic Ñ Real

DANN(Resnet-101) [1] 57.4

ILA-DA (with DANN, Resnet-101) 64.63

CDAN(Resnet-50) [4] 66.8

ILA-DA (with CDAN, Resnet-50) 68.85

Table S2: VisDA dataset Results for ILA-DA on VisDA adaptation set-

ting using ResNet-101 for comparison with DANN[1] and ResNet-50 for

comparison with CDAN[4].

S3. Effect of k

We provide results with k “ 1, 3, 5 for Office-31 and

Birds-31 in Table S3a and Table S3b, respectively. For

Office-31, we observe that k “ 5 gives optimal results for

most of the individual tasks and also outperforms over k “ 1

and k “ 3 on the average. For Birds-31, we observe that

k “ 3 gives the best average on all the six tasks followed by

k “ 5 and k “ 1. In general, we observe that k ą 1 is useful

for reliable pseudo-labeling in our approach. This is because

using a larger value of k allows deciding the psuedo-label

based on a larger number of neighboring source samples,

which makes it robust to outliers near the decision bound-

aries. This hypothesis is verified by results on challenging

tasks in Office-31, such as WÝÑA in Table S3a.

S4. Effect of number of classes

We demonstrate the effectiveness of ILA-DA in improv-

ing class aware adaptation by running experiments with

varying number of classes in the domains. For the purpose

of this ablation, we choose the NÝÑC task from Birds-31

and subsample the dataset to only contain the first 10,20

and 31 classes which correspond to using one-third, two-

thirds and the complete label sets, respectively. In Table S4,

we report the performance of our proposed method across

these settings and observe that ILA-DA+DANN outperforms

DANN across the board. More importantly, adaptation us-

ing ILA-DA+DANN provides increasing benefits with an

increase in the number of classes. This can be attributed

to the class aware nature of the adaptation using ILA-DA,

which would be more useful in case of larger number of cat-

egories. These results indicate that our method contributes

successfully towards class level alignment.



Method A Ñ W D Ñ W W Ñ D A Ñ D D Ñ A W Ñ A Avg.

CDAN [4] 93.1 98.2 100.0 89.8 70.1 68.0 86.6

ILA-DA (k=1) 92.20 98.36 100.0 91.96 72.31 69.93 87.46

ILA-DA (k=3) 94.34 99.24 100.0 91.16 73.34 75.15 88.87

ILA-DA (k=5) 95.72 99.25 100.0 93.37 72.10 75.40 89.30

(a) Office-31

Method C Ñ I I Ñ C I Ñ N N Ñ I C Ñ N N Ñ C Avg.

CDAN [4] 68.67 89.74 86.17 73.80 83.18 91.56 82.18

ILA-DA (k=1) 70.77 93.94 90.46 78.47 84.94 94.64 85.54

ILA-DA (k=3) 72.77 93.83 90.36 78.09 86.58 94.53 86.03

ILA-DA (k=5) 72.63 93.72 90.19 78.37 85.98 94.26 85.86

(b) Birds-31

Table S3: Effect of k. Results shown for domain adaptation on Office-31 (S3a) and Birds-31 (S3b) using Resnet-50 for all 6 transfer tasks in each

setting. Results are shown for three values of k “ t1, 3, 5u with ILA-DA using CDAN as the backbone.

# Classes Source Only DANN ILA-DA (with DANN)

c “ 10 94.47 94.81 95.81 (`1.00%)

c “ 20 93.88 93.46 95.64 (`2.18%)

c “ 31 89.96 89.53 93.89 (`4.36%)

Table S4: Effect of number of classes. Comparison of accuracies with

different number of classes for N Ñ C task from Birds-31. We show

results using c “ t10, 20, 31u, which correspond to using 1{3rd, 2{3rd

and complete classes respectively. Owing to the class awareness of our

adaptation, we find that ILA-DA provides increasing benefits with larger c,

where traditional methods like DANN fail.

S5. Coefficient for MSC Loss

The total loss used for training ILA-DA model is given

by Equation S1, with the notations as described in the main

paper. The final loss used for training the network is given by

the sum of the supervised, adversarial and our multi-sample

contrastive(MSC) loss with a training objective.

min
G,C

Lsup ` λ1Ladv ` λ2LMSC

min
D

LD (S1)

where λ1 and λ2 are the weights of the adversarial loss and

the multi-sample contrastive loss respectively, as detailed

in Section 3 of the main paper. In Table S5, we present

results by varying λ2 values to study the effect of MSC

loss coefficient on target accuracy. We run our experiments

on all six tasks for Birds-31 dataset for three values of λ2,

namely λ2 “ t0.1, 1.0, 2.0u. We observe that although the

performance of ILA-DA is more or less robust to MSC loss

coefficient, λ2 “ 1.0 performs optimally for Birds-31 with

a slight improvement of 0.09% over λ2 “ 2.0. Note that we

report results using λ2 “ 2.0 in our main paper for Birds-

31, which we directly adopt from Office-31 experiments.

Results in Table S5 indicate that there is further room for

improvement by tuning loss coefficients specific to datasets.

S6. Further Comparisons on Office-31

A related yet different work to ours is Contrastive Adapta-

tion Network (CAN) [2], which is based on MMD whereas

our proposed technique is designed to work in an adversarial

setup. We provide a comparison with CAN on Office-31

dataset in Table S6 using ILA-DA + CDAN. Since CAN

Method C Ñ I I Ñ C I Ñ N N Ñ I C Ñ N N Ñ C Avg.

ILA-DA , λ2=0.1 72.31 93.56 90.39 77.14 86.31 94.37 85.68

ILA-DA , λ2=1.0 72.98 93.56 90.09 78.79 86.91 94.43 86.12

ILA-DA , λ2=2.0 72.77 93.83 90.36 78.09 86.58 94.53 86.03

Table S5: Effect of MSC loss coefficient(λ2). Results for 6 transfer tasks

on Birds-31 for three different values of λ2 “ t0.1, 1.0, 2.0u. Results

shown for k “ 3.

Method A Ñ W D Ñ W W Ñ D A Ñ D D Ñ A W Ñ A Avg.

CDAN [4] 93.1 98.2 100.0 89.8 70.1 68.0 86.6

CAN [2] 94.5 99.1 99.8 95.0 78.0 77.0 90.6

CAN˚ 94.50 99.01 100.0 93.69 74.92 75.36 89.58

ILA-DA (with CDAN) 95.72 99.25 100.0 93.37 72.10 75.40 89.30

Table S6: ILA-DA vs. CAN Results for domain adaptation on Office-31

adaptation setting using Resnet-50. CAN˚ indicates our implementation of

CAN using similar hyperparameter settings as ours.

uses task specific hyperparameters and domain specific batch

norm while we do not, we re-implement their method us-

ing the same hyperparameter settings as ours (indicated by

CAN˚ in Table S6). From Table S6, we observe that ILA-

DA outperforms CAN on three tasks of the Office-31 dataset,

namely AÝÑW, DÝÑW and WÝÑD and performs compara-

bly on other tasks. Overall, we find that ILA-DA + CDAN

performs equally against CAN on the average.
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