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1. The Generalized Similarity Preserving Loss
In this section, we give the generalized formulation of

Lsp, which is defined as the following in the main text:

Lsp =MSP (G1
aux, · · · , GCaux, Gtar), (1)

where Giaux ∈ RNi×Ni and Gtar ∈ RN×N denote the
similarity matrices calculated by the auxiliary and target
branches, respectively. N is the batch size, and Ni is
the number of images that are not annotated to the i-th
class in the batch. For coding simplicity, given an image
batch, we define Atar ∈ RN×N and Ai

aux ∈ RN×N
(i ∈ {1, 2, · · · , C}), and the j-th row atarj of Atar and
aiauxj

of Ai
aux are denoted as:

atarj =
ftarj · fTtar∥∥ftarj · fTtar∥∥2 , (2)

aiauxj
=

f iauxj
· f iaux

T∥∥∥f iauxj
· f iaux

T
∥∥∥
2

, (3)

where ftar ∈ RN×d and f iaux ∈ RN×d are the semantic
features in the target branch and the auxiliary branch i, re-
spectively, ftarj ∈ R1×d and f iauxj

∈ R1×d are the j-th
row of ftar and f iaux, respectively, and d is the feature di-
mension. Then, we implement Lsp by masking Atar and
Ai
aux, which Lsp can be rewritten as:

Lsp =
1

C

C∑
j=1

1

N2
i

∥∥M i ∗Atar −M i ∗Ai
aux

∥∥2
F
, (4)

where ∗ is the element-wise product. The q-th row and p-th
column element mi

q,p of M i∈ RN×N is defined as:

mi
q,p =

{
0 yp = i or yq = i
1 Others

, (5)
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Figure 1: The loss curves of training with Lsp (the red
curve) and without Lsp (the blue curve) along iterations.
Experiments are conducted on AffectNet with ResNet-18
as the backbone architecture.

where yp and yq denote the annotations of the p-th and q-
th images in the batch, respectively (yp, yq ∈ {1, · · · , C}).
Lsp is easy to be implemented by a few lines of code1.

Benefits of Lsp. The non-zero elements in Atar and
Ai
aux represent the predicted similarity values of image

pairs. With the constraint of Lsp, all the branches are reg-
ularized to predict consistent similarity value for an image
pair. As shown in Fig. 1, similarity preserving makes the
training more stable. The loss value rises up a little around
the 20k-th iteration step because the ramp functions grad-
ually assign larger weight for Ltargetwce to train the target
branch.

2. Evaluation of Synthetic Ambiguity
To better demonstrate the superiority of latent distribu-

tion mining, we conduct qualitative analyses on synthetic
mislabelled samples. Specifically, a portion of training sam-
ples are randomly chosen of which the labels are flipped to
other categories. Then, we use DMUE to train the network
on the synthetic mislabelled data and visualize the mined

1Our source code and pre-trained models will be released.
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Table 1: Accuracy (%) on RAF-DB and AffectNet with pre-
training on MS-Celeb-1M.

Backbone Architecture DMUE AffectNet RAF-DB
ShuffleNetV1 (group=3;2.0×) - 56.51 86.20
ShuffleNetV1 (group=3;2.0×) X 60.87 88.73

MobileNetV2 - 57.65 86.01
MobileNetV2 X 62.34 87.97

ResNet-18 - 58.85 86.33
ResNet-18 X 62.84 88.76

ResNet50-IBN - 58.94 86.57
ResNet50-IBN X 63.11 89.51

Table 2: Accuracy (%) on RAF-DB and AffectNet without
pre-training on MS-Celeb-1M.

Backbone Architecture DMUE AffectNet RAF-DB
ShuffleNetV1 (group=3;2.0×) - 55.02 85.65
ShuffleNetV1 (group=3;2.0×) X 59.67 88.10

MobileNetV2 - 54.94 85.44
MobileNetV2 X 60.43 88.15

ResNet-18 - 55.22 86.01
ResNet-18 X 61.22 88.33

ResNet50-IBN - 55.52 85.67
ResNet50-IBN X 60.54 88.94

latent distributions in Fig. 3. We can observe that the mined
latent distribution is able to correct the noisy annotation
well. Taking the last image in Fig. 3 as an example, al-
though its true label Anger is flipped to Happy, the latent
distribution well reflects its true class Anger. Moreover, the
latent distribution also has the capacity to reflect the second
possible class for compound expressions. For the first im-
age, the latent distribution reflects its second possible class
Anger, which is in line with the subjective perception. By
imposing the latent distribution as the additional supervi-
sion, DMUE effectively utilizes the semantic features of
samples.

3. Ablation Study

Different Backbone Networks. As described in the
main text, DMUE is independent to the backbone archi-
tectures. We further apply DMUE to ShuffleNetV1 [2] and
MobileNetV2 [1] to demonstrate the universality of DMUE,
where the last stage of ShuffleNetV1 and the last two stages
of MobileNetV2 are separated for latent distribution min-
ing. The results on AffectNet and RAF-DB are presented in
Table 1. We observe that DMUE can stably improve the per-
formance of all the architectures, including ShuffleNetV1,
MobileNetV2, ResNet-18 and ResNet-50IBN, by an aver-
age of 4.30% and 2.47% on AffectNet and RAF-DB, re-
spectively. In addition, the ResNet50-IBN achieves the best
record among these architectures because of the large num-
ber of parameters and the IBN module. Furthermore, we
report the results of training DMUE from scratch on Af-
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Figure 2: The iteratively updated latent distribution of the
sample from Fig. 4 in the main text. Best viewed in color.
Zoom in for better view.

fectNet and RAF-DB in Table 2. Similar observations can
also be found without using the pre-trained model on MS-
Celeb-1M.

Mining latent distribution. In the main text Table 4,
we describe the quantitative comparison aiming at investi-
gating which way to mine latent distribution is better. In
the quantitative comparison, we train the auxiliary branches
with the whole image batch, and their predictions for each
image are averaged, denoted as LD-A. As shown in Fig. 4,
LD-A reflects the visual feature of images to some extent.
But the second and the third possible class of a compound
expression is not discriminative in LD-A.

In Fig 2, we provide a toy example of latent label space
some intermediate iterations. The latent distribution is com-
pletely random at the beginning. It gradually reflects the
visual feature of the sample during iterations.

4. More Results and Mathematical Reason for
the Uncertainty Estimation

Assume a class center feature ci of the i-th class, the
angle between a i-th class sample’s feature x and ci is θ,
that θ = acos(〈x, ci〉). Without losing generality, assume
θ ∼ N (0, σ2) in [−π, π] (as the ambiguity increases, the
number of samples decreases). Given a sample a with se-
mantic feature f , that 〈f , ci〉 = cosα. We have:

Sa,i = E
θ∼N (0,σ2),θ∈[−π,π]

{< x,f >}, (6)

where ‖ci‖ = ‖x‖ = ‖f‖ = 1. We first study the equa-
tion in a special case where α = π

2 . We denote x⊥ as the
projection from x to the linear subspace W :

x = ci + x⊥, (7)

Rn = span{ci} ⊕ W , ⊕ is the direct sum. Let
{z1, · · · , zn−1} is a set of basis of W . We have x⊥ under
uniform distribution as prior for Softmax or other angle-
based loss, that is E{

〈
x⊥, zk

〉
} = 0, with 1 ≤ k ≤ n− 1.

As α = π
2 in this special case, f can be rewritten as:

f =
∑n−1

k
ωkzk. (8)

We have f⊥ci, and have:
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E{< x⊥,f >} = E{x⊥ ·
∑n−1

k
ωkzk}

=
∑n−1

k
ωkE{x⊥ · zk}

= 0,

E{< x,f >} = 0.

(9)

Now, for the general case, we construct:{
f1 =< f , ci > ci,
f2 = f − f1,

(10)

< x,f >=< x,f1 > + < x,f2 > . (11)

We notice that f2⊥ci:
< f2, ci > =< f , ci > − < f1, ci >

=< f , ci > − << f , ci > ci, ci >

=< f , ci > − < f , ci > ‖ci‖
= 0.

(12)

From Eq. 9, we have E{〈x,f2〉} = 0, so we have:
Sa,i = E

θ∼N (0,σ2),θ∈[−π,π]
{< x,f >}

= E
θ∼N (0,σ2),θ∈[−π,π]

{< x,f1 >}

= E
θ∼N (0,σ2),θ∈[−π,π]

{< x, < f , ci > ci >}

=< f , ci > E
θ∼N (0,σ2),θ∈[−π,π]

{< x, ci >}

= cosα E
θ∼N (0,σ2),θ∈[−π,π]

{cos θ}.

(13)

Obviously, if a is the j-th class sample mislabelled to
the i-th class, then |α| is large, Sa,i becomes small and Sa,j
becomes large, which is contrary to the concatenated label.
Thus, we can estimate the uncertainty from SVa as it carries
ambiguity information.

We present more visualization results of the estimated
uncertainty score in Fig. 6, where lower scores mean more
ambiguous images. It is obvious that the estimated uncer-
tainty level is in line with the subjective perception. With
the uncertainty estimation module, DMUE is able to sup-
press the adverse influence from ambiguous data, encour-
aging the network to utilize the semantic features and learn
the latent distribution for the ambiguous image.

5. More Results of User Study
As described in the main text, we pick 20 images from

FER datasets and have them labelled by 50 volunteers. We
provide more visualization results of the mined latent dis-
tribution and the perception from volunteers in Fig. 5. Ac-
cordingly, we draw the following conclusions: (1) One in-
herent property of facial expression is that compound fa-
cial expressions may exist. It is easy for volunteers to have
disagreements with the exact type of images whose anno-
tations in dataset are Fear, Disgust, Sad and Anger. One
reason may be that folds in the region of eyebrow are often

involved in those easily confused expressions. Thus, they
may share some common visual features, making it hard to
define the exact expression type from a static image. (2)
The main goal of latent distribution is to provide reasonable
guidance to the target branch, rather than finding the exact
label distribution of a facial expression image. Thus, we
utilize the L2 loss to minimize the deviation because it is
bounded and less sensitive to the incorrect prediction.

Why auxiliary branches work? Based on the conclu-
sions above, we find the one-hot label is hard to represent
the visual features of expressions. The annotation of face
expression is subjective and difficult, because different ex-
pressions naturally entangle each other in the visual space.
Auxiliary branches are proposed to disentangle such con-
nections. Each auxiliary branch is a classifier that maps im-
ages to their latent classes. By doing so, we disentangle the
ambiguity in the label space.
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Figure 3: DMUE yields the latent truth for noisy samples. The bottom of each image is tagged by its original annotation.
The top of each image is tagged by manually flipped noisy label. DMUE is adopted to train network on synthetic noisy
datasets. We visualize the mined latent distribution for synthetic noisy samples at the right of each image. The mined latent
distribution is in line with the human subjective perception, where the most possible class reflected by latent distribution
is corresponding to the original annotation. (Neu=Neutral, Hap=Happy, Sad=Sad, Sur=Surprise, Fea=Fear, Dis=Disgust,
Ang=Anger, Con=Contempt)
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Figure 4: Qualitative comparison between LD-A and LD-N. The red bar denotes the positive class predicted in LD-A. The
purple bar denotes the second possible class predicted in LD-A and LD-N for ambiguous images. (a) Images tagged by their
original annotation. (b) The LD-A can reflect the visual feature to a certain extent, yet the images’ possibility distribution
among its negative classes is not discriminative. (c) The LD-N that we used in DMUE, describes an image on its negative
classes discriminatively. (Ne=Neutral, Ha=Happy, Sa=Sad, Su=Surprise, Fe=Fear, Di=Disgust, An=Anger, Co=Contempt)
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Figure 5: More visualizations of the mined latent distributions and subjective survey results. The age of 50 volunteers range
from 17 to 51. Each image is tagged with its annotation. The orange bar denotes the mined latent distribution and the blue
bar denotes the subjective survey results. To process the votes from volunteers, we set the number of votes on each sample’s
positive class as zero. Then we normalize the results, which reflect the probability that image belonging to each negative
class. As we can see, the mined latent distribution is consistent with human intuition in general. (Ne=Neutral, Ha=Happy,
Sa=Sad, Su=Surprise, Fe=Fear, Di=Disgust, An=Anger, Co=Contempt)
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Figure 6: More visualization results of the estimated confidence score. From top to bottom, each row presents images from
the same batch. The bottom of each image is tagged with its annotation from the dataset. The upper left of each image is
tagged with its estimated uncertainty score. Lower scores are assigned to those more ambiguous images. The upper right of
each image is tagged with its confidence rank in the batch. From left to right, we present images with their confidence scores
in an ascending order. Images near the right side of the figure are less ambiguous, while images near the left side are in the
opposite. In general, we observe that the estimated uncertainty score is in line with the subjective perception. Moreover, we
insert an anchor image which is annotated to Fear in two different batches (the green bounding box in the 5-th and 7-th row).
The uncertainty estimation module predicts consistent confidence score for this anchor image, which indicates the stability
of our uncertainty estimation module.
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