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A. Overview
This Appendix provides more details about comparative studies in the main paper and includes more implementation

details about experiments. In Section B, we introduce a special element-wise max operator widely used in point cloud
processing. In Section C, we briefly introduce DNNs used in comparative studies. In Section D, we show details about
different versions of DNNs for comparison. In Section E, we show implementation details about extending the entropy-based
method [7] to point cloud processing. In Section F, we compare the accuracy of different versions of DNNs. In Section G,
we supplement related work about learning interpretable representations.

B. Details about the function g(·)
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Figure 1. Illustration of the special max pooling operator g(·). Fi denotes features correspond to points in neighborhood N(i) w.r.t.
point xi. Each row of F>i in the figure represents the feature of a specific point in N(i).

In point cloud processing, a special element-wise max operator, g(·), is widely used for aggregating a set of neighboring
points’ features into a local feature. As shown in Figure 1, given a set of K nearest neighboring points of xi, N(i), let
Fi ∈ Rd×K denote intermediate-layer features that correspond to the set of neighboring points in N(i) w.r.t. the point xi.
Each specific column of Fi represents the feature of a specific point in N(i). The feature in the upper layer, i.e. fupper

i , which
is the local feature of N(i), can be formulated as follows.

fupper
i = g(Fi) = MAX

i=1,...,K
(MLP (Fi)), (1)

where MLP is an MLP with a few layers; MLP (Fi) ∈ RD×K ; MAX is an element-wise max operator as follows. Let
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F′i =MLP (Fi).
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C. Summaries of relevant technologies in existing DNNs
For the convenience of readers to quickly understand relevant technologies in existing DNNs, we summarize relevant

technologies of PointNet++ [9], PointConv [12], Point2Sequence [5], PointSIFT [4], and RSCNN [6] in this section.

C.1. PointNet++

PointNet++ [9] is a hierarchical structure composed of a number of set abstraction modules (SA module). For each SA
module, a set of points is processed and abstracted to produce a new set with fewer elements. An SA module includes
four parts: the Sampling layer, the Grouping layer, the MLP, and the Maxpooling layer. Given a set of N input points, the
Sampling layer uses the farthest point sampling algorithm to select a subset of points from the input points, which defines the
centroids of local regions, {xi}, i = 1, . . . , N ′. Then, for each selected point, the Grouping layer constructs a local region by
using ball query search to find K neighboring points within a radius r. For each local region N(i) centered at xi, Fi ∈ Rd×K

denotes the intermediate-layer features that correspond to points in N(i). The MLP transforms Fi into higher dimensional
features F′i ∈ RD×K , where D > d. Finally, the Maxpooling layer encodes F′i into a local feature fupper

i , which will be fed to
the upper SA module. Please see Section B for details about the Maxpooling layer.

In this study, the baseline network of PointNet++ is composed of three SA modules and a few fully connected layers.
Please see Table 1 (left column) for details about the network architecture.

C.2. PointConv

PointConv [12] has a similar architecture with PointNet++, i.e. hierarchically using a few blocks to extract contextual
information. In this study, the baseline network of PointConv is composed of five blocks. Each block is constructed as
[Sample layer→Group layer→MLP→Architecture 1→Architecture 2→Conv layer].

The Sampling layer uses the farthest point sampling algorithm to select a subset of points from the input points, which
defines the centroids of local regions. Then, for each selected point, the Grouping layer constructs a local region by using
k-NN search to find K neighboring points. For each local region, the MLP transforms features of points in the local region
into higher dimensional features. Different from PointNet++, PointConv uses the information of density (i.e. Architecture 1)
and local 3D coordinates (i.e. Architecture 2) to reweight the features learned by the MLP. Finally, a 1×1 convolution is used
to compute the output feature of each local region. Please see Table 3 (left column) for details about the network architecture.

C.3. Point2Sequence

Point2Sequence [5] is composed of five parts: (a) multi-scale area establishment, (b) area feature extraction, (c) encoder-
decoder feature aggregation, (d) local region feature aggregation, and (e) shape classification, where parts (a) and (b) make
up Architecture 3 in our study.

Specifically, given a point cloud X = {xi}, i = 1, 2, ..., N , Point2Sequence first uses the farthest point sampling algo-
rithm to select N ′ points from the input point cloud, X′ = {x′j}, j = 1, 2, ..., N ′, to define the centroids of local regions
{N(j)}, j = 1, 2, ...N ′. For each local region N(j), T different scale areas {A(j)1, ...,A(j)t, ...,A(j)T } are established by
using k-NN search to select T nearest points of x′j , [K1, ...,Kt, ...,KT ]. In this way, multi-scale areas are established. Then,
Point2Sequence extracts a feature fupper

j,scale=Kt
∈ Rd for each scale area A(j)t by the MLP and the Maxpooling layer introduced

in Section C.1. In this way, for each local region N(j), a feature sequence fupper
j = {fupper

j,scale=K1
, ..., fupper

j,scale=Kt
, ..., fupper

j,scale=KT
}

is obtained. Then, fupper
j is aggregated into a d-dimensional feature rj by the encoder-decoder feature aggregation part. The

sequence encoder-decoder structure used here is an LSTM network, where an attention mechanism is proposed to highlight
the importance of different area scales (please see [5] for details). Then, a 1024-dimensional global feature is aggregated
from the features rj of all local regions by the local region feature aggregation part. Finally, the global feature is used for
shape classification. Please see Table 4 for details about the network architecture.



Pointnet++ Pointnet++ with Architecture 1 Pointnet++ with Architecture 2 Pointnet++ with Architecture 4
Sample (512) Sample (512) Sample (512) Sample (512)

Group (0.2,32) Group (0.2,32) Group (0.2,32) Group (0.2,32)
MLP [64,64,128] MLP [64,64,128] MLP [64,64,128] MLP [64,64,128]

Maxpooling Architecture 1 Architecture 2 Maxpooling
Sample (128) Maxpooling Maxpooling Sample (128)

Group (0.4,64) Sample (128) Sample (128) Group (0.4,64)
MLP [128,128,256] Group (0.4,64) Group (0.4,64) MLP [128,128,256]

Maxpooling MLP [128,128,256] MLP [128,128,256] Maxpooling
Sample (1) Architecture 1 Architecture 2 Architecture 4 [256]
Group (all) Maxpooling Maxpooling Sample (1)

MLP [256,512,1024] Sample (1) Sample (1) Group (all)
Maxpooling Group (all) Group (all) MLP [256,512,1024]

FC [512,256,40] MLP [256,512,1024] MLP [256,512,1024] Maxpooling
Softmax Architecture 1 Architecture 2 FC [512,256,40]

Maxpooling Maxpooling Softmax
FC [512,256,40] FC [512,256,40]

Softmax Softmax
Table 1. Different versions of PointNet++, including the original one, the one with Architecture 1, the one with Architecture 2, and the
one with Architecture 4. Sample (N ) indicates the Sample layer, which selects a subset of N points from the input point cloud. Group
(r,K) indicates the Group layer, which uses the ball query search to find K neighboring points around each sampled point within a radius
r. Group (all) means constructing a region with all the input points. MLP [u1, . . . , ul] indicates the MLP with l layers, where ui is the
number of hidden units of the i-th layer. Architecture 4 [d] indicates Architecture 4, which outputs d-dimensional features.

C.4. PointSIFT

PointSIFT [4] adopts the similar hierarchical structure as PointNet++, which is composed of a number of SA modules.
The difference is that PointSIFT uses a special orientation encoding unit, i.e., Architecture 4, to learn an orientation-aware
feature for each point.

Architecture 4 is a point-wise local feature descriptor that encodes information of eight orientations. Unlike the unordered
operator, e.g. max pooling, which discards all inputs except for the maximum, Architecture 4 is an ordered operator, which
could be more informative.

Architecture 4 first selects 8-nearest points of xi from eight octants partitioned by the ordering of three coordinates. Since
distant points provide little information for the description of local patterns, when no point exists within searching radius r
in some octant, xi will be duplicated as the nearest neighbor of itself. Then, Architecture 4 processes features of 8-nearest
neighboring points, Foe

i ∈ Rd×2×2×2, which reside in a 2 × 2 × 2 cube for local pattern description centering at xi, the three
dimensions 2 × 2 × 2 correspond to three axes. An orientation-encoding convolution, i.e. Convoe, which is a three-stage
operator, is used to convolve the 2× 2× 2 cube along x, y, and z axis. The three-stage convolution Convoe is formulated as:

fx−axis
i = ReLU(Conv(Wx,F

oe
i ))) ∈ Rd×2×2×1

f
(x,y)−axis
i = ReLU(Conv(Wy, f

x−axis
i )) ∈ Rd×2×1×1

foe
i = f

(x,y,z)−axis
i = ReLU(Conv(Wz, f

(x,y)−axis
i )) ∈ Rd×1×1×1

(3)

where Wx ∈ Rd×1×1×2, Wy ∈ Rd×1×2×1, and Wz ∈ Rd×2×1×1 are weights of the convolution operator.
In this way, Architecture 4 learns the orientation-aware feature foe

i for each point xi. Such orientation-aware features will
be fed to SA modules (introduced in Section C.1) to extract contextual information. Please see Table 8 (left column) for
details about the network architecture.

C.5. RSCNN

RSCNN [6] adopts the similar hierarchical structure as PointNet++, which is composed of a number of SA modules. The
difference is that RSCNN uses a special relation-shape convolution (RS-Conv) to learn from the relation, i.e. the geometric
topology constraint among points. Specifically, the convolutional weight for local point set is forced to learn a high-level
relation expression from predefined geometric priors, between a sampled point from this point set and the others.

The goal of the RS-Conv operation is to learn an inductive representation of the neighborhood of each point. Given a
point xi, let N (xi) be the neighborhood centered at xi. Each point xj ∈ N (xi) is the surrounding point of xi. The RS-Conv
operation consists of two steps: (1) learning from relation, and (2) channel-raising mapping. The first step can be formulated
as follows.

fPsub = σ(A({MLP (hij) · fxj , ∀xj})), dij < r ∀xj ∈ N (xi), (4)



PointNet++ PointNet++ with Architecture 3
Sample (512) Sample (512)

Group (0.2,32) Group (0.1,16) Group (0.2,32) Group (0.4,128)
MLP [64,64,128] MLP [32,32,64] MLP [64,64,128] MLP [64,96,128]

Maxpooling Maxpooling Maxpooling Maxpooling
Sample (128) Multi-Scale Feature Aggregation

Group (0.4,64) Sample (128)
MLP [128,128,256] Group (0.2,32) Group (0.4,64) Group (0.8,128)

Maxpooling MLP [64,64,128] MLP [128,128,256] MLP [128,128,256]
Sample (1) Maxpooling Maxpooling Maxpooling
Group (all) Multi-Scale Feature Aggregation

MLP [256,512,1024] Sample (1)
Maxpooling Group (all)

FC [512,256,40] MLP [256,512,1024]
Softmax FC [512,256,40]

Softmax
Table 2. The original PointNet++ and the PointNet++ with Architecture 3.

where dij is the Euclidean distance between xi and xj , and r is the sphere radius.
The step of learning from relation can be summarized as follows. First, transform features of all the points in N (xi) with

function MLP (hij) · fxj , where MLP (hij) uses a shared MLP to abstract high-level relation expression between points xi
and xj and hij is defined as a compact vector with 10 channels, i.e. (3D Euclidean distance, xi − xj , xi, xj). Then, aggregate
the transformed features with function A followed by a nonlinear activator σ. σ is implemented as the special maxpooling
operation introduced in Section B.

The step of channel-raising mapping is to increase the channel number of fPsub . Specifically, a shared MLP is added on
fPsub to achieve the goal. Please see Table 9 (left column) for details about the network architecture.

D. Global architectures of existing DNNs and their revised versions
D.1. PointNet++

In this study, we reconstructed the PointNet++ [9] using four specific modules. Table 1 and Table 2 compare the different
versions of PointNet++, including the original one, the one with Architecture 1 [12], the one with Architecture 2 [12], the
one with Architecture 4 [4], and the one with Architecture 3 [5].

To obtain the PointNet++ with Architecture 1 (as shown in Table 1), we added modules of Architecture 1 after all the
MLPs in PointNet++, i.e. the output of the MLP was reweighted by the weights learned by Architecture 1. Architecture 1
used in this study was an MLP with two layers, the first layer contained 16 hidden units, and the second layer contained 1
hidden unit. This network was designed to verify the effect of Architecture 1 on the adversarial robustness.

To obtain the PointNet++ with Architecture 2 (as shown in Table 1), we added modules of Architecture 2 after all the
MLPs in PointNet++, i.e. the output of the MLP was reweighted by the weights learned by Architecture 2. Architecture 2
used in this study was an MLP with a single-layer, which contained 32 hidden units. This network was designed to verify the
effect of Architecture 2 on the rotation robustness.

To obtain the PointNet++ with Architecture 4 (as shown in Table 1), we added the module of Architecture 4 before the
last Sample layer in PointNet++. This network was designed to verify the effect of Architecture 4 on the rotation robustness.

To obtain the PointNet++ with Architecture 3 (as shown in Table 2), we used the multi-scale version of PointNet++
designed in [9]. Compared with the single-scale version of PointNet++ (as shown in Table 1 (left)), the multi-scale ver-
sion added two blocks after the first Sample layer, i.e. [Group(16) → MLP[32, 32, 64] → Maxpooling] and [Group(128) →
MLP[64, 96, 128] → Maxpooling], The multi-scale version added another two blocks after the second Sample layer, i.e.
[Group(32) → MLP[64, 64, 128] → Maxpooling] and [Group(128) → MLP[128, 128, 256] → Maxpooling]. In this way, the multi-
scale version of PointNet++ extracted two more scale features. This network was used to verify the effect of Architecture 3
on the adversarial robustness and the neighborhood inconsistency.

D.2. PointConv

Table 3 compares different versions of PointConv [12], including the original one, the one without Architecture 1 [12],
and the one without Architecture 2 [12].

To obtain the PointConv without Architecture 1 (as shown in Table 3 (middle column)), we removed all the five modules
of Architecture 1 from the original PointConv architecture. This network was designed to verify the effect of Architecture 1



PointConv PointConv without Architecture 1 PointConv without Architecture 2
Sample (1024) Sample (1024) Sample (1024)

Group (32) Group (32) Group (32)
MLP [32,32] MLP [32,32] MLP [32,32]

Architecture 1 Architecture 2 Architecture 1
Architecture 2 Conv [64] Conv [64]

Conv [64] Sample (256) Sample (256)
Sample (256) Group (32) Group (32)
Group (32) MLP [64,64] MLP [64,64]

MLP [64,64] Architecture 2 Architecture 1
Architecture 1 Conv [128] Conv [128]
Architecture 2 Sample (64) Sample (64)

Conv [128] Group (32) Group (32)
Sample (64) MLP [128,128] MLP [128,128]
Group (32) Architecture 2 Architecture 1

MLP [128,128] Conv [256] Conv [256]
Architecture 1 Sample (36) Sample (36)
Architecture 2 Group (32) Group (32)

Conv [256] MLP [256,256] MLP [256,256]
Sample (36) Architecture 2 Architecture 1
Group (32) Conv [512] Conv [512]

MLP [256,256] Sample (1) Sample (1)
Architecture 1 Group (all) Group (all)
Architecture 2 MLP [512,512] MLP [512,512]

Conv [512] Architecture 2 Architecture 1
Sample (1) Conv [1024] Conv [1024]
Group (all) FC [512,128,40] FC [512,128,40]

MLP [512,512] Softmax Softmax
Architecture 1
Architecture 2

Conv [1024]
FC [512,128,40]

Softmax
Table 3. Different versions of PointConv, including the original one, the one without Architecture 1, the one without Architecture 2. Here
Group (K) indicates the Group layer, which uses the k-NN search to find K neighboring points around each sampled point.

on the adversarial robustness.
To obtain the PointConv without Architecture 2 (as shown in Table 3 (right column)), we removed all the five modules of

Architecture 2 from the original PointConv architecture. This network was designed to verify the effect of Architecture 2 on
the rotation robustness.

D.3. Point2Sequence

The baseline network of Point2Sequence (as shown in Table 4) extracted features of four different scales, i.e., for each
local region centered at point xi, features were computed using the contextual information of 16, 32, 64, and 128 nearest
neighbors of xi, respectively. To obtain different versions of Point2Sequence for comparison, we removed features of specific
scales. We first removed the feature extracted by [Group(16) → MLP[32, 64, 128] → Maxpooling] to obtain the first version of
Point2Sequence. We then removed features extracted by [Group(16) → MLP[32, 64, 128] → Maxpooling] and [Group(32) →
MLP[64, 64, 128] → Maxpooling] to obtain the second version for comparison. These two versions for comparison were
designed to verify the effect of Architecture 3 on the adversarial robustness and the neighborhood inconsistency.

To obtain the Point2Sequence with Architecture 1 (as shown in Table 5), we added the module of Architecture 1 after the
last MLP, i.e. MLP [256,512,1024], in Point2Sequence. This network was designed to verify the effect of Architecture 1 on
the adversarial robustness.

To obtain the Point2Sequence with Architecture 2 (as shown in Table 6), we added the module of Architecture 2 after the
last MLP, i.e. MLP [256,512,1024], in Point2Sequence. This network was designed to verify the effect of Architecture 2 on
the rotation robustness.

To obtain the Point2Sequence with Architecture 4 (as shown in Table 7), we added the module of Architecture 4 after the
LSTM. This network was designed to verify the effect of Architecture 4 on the rotation robustness.



Point2Sequence
Sample (384)

Group (16) Group (32) Group (64) Group4 (128)
MLP [32,64,128] MLP [64,64,128] MLP [64,64,128] MLP4 [128,128,128]

Maxpooling Maxpooling Maxpooling Maxpooling
Multi-Scale Feature Aggregation

LSTM [128]
Sample (1)
Group (all)

MLP [256,512,1024]
Maxpooling

FC [512,256,40]
Softmax

Table 4. Illustration of the original Point2Sequnence network architecture. Here Group (K) indicates the Group layer, which uses the
k-NN search to find K neighboring points around each sampled point.

Point2Sequence with Architecture 1
Sample (384)

Group (16) Group (32) Group (64) Group4 (128)
MLP [32,64,128] MLP [64,64,128] MLP [64,64,128] MLP4 [128,128,128]

Maxpooling Maxpooling Maxpooling Maxpooling
Multi-Scale Feature Aggregation

LSTM [128]
Sample (1)
Group (all)

MLP [256,512,1024]
Architecture 1

Maxpooling
FC [512,256,40]

Softmax
Table 5. Illustration of the Point2Sequnence with Architecture 1.

Point2Sequence with Architecture 2
Sample (384)

Group (16) Group (32) Group (64) Group4 (128)
MLP [32,64,128] MLP [64,64,128] MLP [64,64,128] MLP4 [128,128,128]

Maxpooling Maxpooling Maxpooling Maxpooling
Multi-Scale Feature Aggregation

LSTM [128]
Sample (1)
Group (all)

MLP [256,512,1024]
Architecture 2

Maxpooling
FC [512,256,40]

Softmax
Table 6. Illustration of the Point2Sequnence with Architecture 2.

Point2Sequence with Architecture 4
Sample (384)

Group (16) Group (32) Group (64) Group4 (128)
MLP [32,64,128] MLP [64,64,128] MLP [64,64,128] MLP4 [128,128,128]

Maxpooling Maxpooling Maxpooling Maxpooling
Multi-Scale Feature Aggregation

LSTM [128]
Architecture 4 [128]

Sample (1)
Group (all)

MLP [256,512,1024]
Maxpooling

FC [512,256,40]
Softmax

Table 7. Illustration of the Point2Sequnence with Architecture 4.



D.4. PointSIFT

To obtain the PointSIFT without Architecture 4 (as shown in Table 8), we removed all the four modules of Architecture 4
from the original PointSIFT. This network was designed to verify whether Architecture 4 can improve the rotation robustness.

PointSIFT PointSIFT without Architecture 4
Architecture 4 [64] Sample (1024)

Sample (1024) Group (0.1,32)
Group (0.1,32) MLP [64,128]
MLP [64,128] Maxpooling
Maxpooling Sample (256)

Architecture 4 [128] Group (0.2,32)
Sample (256) MLP [128,256]

Group (0.2,32) Maxpooling
MLP [128,256] Sample (64)

Maxpooling Group (0.4,32)
Architecture 4 [256] MLP [256,512]

Sample (64) Maxpooling
Group (0.4,32) Sample (1)
MLP [256,512] Group (all)

Maxpooling MLP [512,1024]
Architecture 4 [512] Maxpooling

Sample (1) FC [512,256,40]
Group (all) Softmax

MLP [512,1024]
Maxpooling

FC [512,256,40]
Softmax

Table 8. Illustration of the PointSIFT without Architecture 4. Here Group (r,K) indicates the Group layer, which uses the ball query
search to find K neighboring points around each sampled point within a radius r.

D.5. RSCNN

In this study, we reconstructed the RSCNN [6] using four specific modules. Table 9 and Table 10 compare the different
versions of RSCNN, including the original one, the one with Architecture 1 [12], the one with Architecture 2 [12], the one
with Architecture 4 [4], and the one with Architecture 3 [5].

RSCNN RSCNN with Architecture 1 RSCNN with Architecture 2 RSCNN with Architecture 4
Sample (512) Sample (512) Sample (512) Sample (512)

Group (0.23,48) Group (0.23,48) Group (0.23,48) Group (0.23,48)
RS-Conv: MLP [64,16] RS-Conv: MLP [64,16] RS-Conv: MLP [64,16] RS-Conv: MLP [64,16]
RS-Conv: Maxpooling Architecture 1 Architecture 2 RS-Conv: Maxpooling
RS-Conv: MLP [128] RS-Conv: Maxpooling RS-Conv: Maxpooling RS-Conv: MLP [128]

Sample (128) RS-Conv: MLP [128] RS-Conv: MLP [128] Sample (128)
Group (0.32,64) Sample (128) Sample (128) Group (0.32,64)

RS-Conv: MLP [32,128] Group (0.32,64) Group (0.32,64) RS-Conv: MLP [32,128]
RS-Conv: Maxpooling RS-Conv: MLP [32,128] RS-Conv: MLP [32,128] RS-Conv: Maxpooling
RS-Conv: MLP [512] Architecture 1 Architecture 2 RS-Conv: MLP [512]

MLP [1024] RS-Conv: Maxpooling RS-Conv: Maxpooling Architecture 4 [512]
Maxpooling RS-Conv: MLP [512] RS-Conv: MLP [512] MLP [1024]

FC [512,256,40] MLP [1024 ] MLP [1024 ] Maxpooling
Softmax Maxpooling Maxpooling FC [512,256,40]

FC [512,256,40] FC [512,256,40] Softmax
Softmax Softmax

Table 9. Different versions of RSCNN, including the original one, the one with Architecture 1, the one with Architecture 2, and the one with
Architecture 4. The layerwise operation prefixed by “RS-Conv:” indicates that the operation is a component of the RS-Conv operation,
which has been well introduced in Section D.5.

To obtain the RSCNN with Architecture 1 (as shown in Table 9), we added modules of Architecture 1 before all RS-Conv:
Maxpooling modules in the RSCNN. Architecture 1 used in this study was an MLP with two layers, the first layer contained
16 hidden units, and the second layer contained 1 hidden unit. This network was designed to verify the effect of Architecture
1 on the adversarial robustness.



RSCNN RSCNN with Architecture 3
Sample (512) Sample (512)

Group (0.23,48) Group (0.075,16) Group (0.1,32) Group (0.23,48)
RS-Conv: MLP [64,16] RS-Conv: MLP [64,16] RS-Conv: MLP [64,16] RS-Conv: MLP [64,16]
RS-Conv: Maxpooling RS-Conv: Maxpooling RS-Conv: Maxpooling RS-Conv: Maxpooling
RS-Conv: MLP [128] RS-Conv: MLP [128] RS-Conv: MLP [128] RS-Conv: MLP [128]

Sample (128) Sample (128)
Group (0.32,64) Group (0.1,16) Group (0.15,48) Group (0.32,64)

RS-Conv: MLP [32,128] RS-Conv: MLP [32,128] RS-Conv: MLP [32,128] RS-Conv: MLP [32,128]
RS-Conv: Maxpooling RS-Conv: Maxpooling RS-Conv: Maxpooling RS-Conv: Maxpooling
RS-Conv: MLP [512] RS-Conv: MLP [512] RS-Conv: MLP [512] RS-Conv: MLP [512]

MLP [1024] MLP [1024]
Maxpooling Maxpooling

FC [512,256,40] FC [512,256,40]
Softmax Softmax

Table 10. The original RSCNN and the RSCNN with Architecture 3. The layerwise operation prefixed by “RS-Conv:” indicates that the
operation is a component of the RS-Conv operation, which has been well introduced in Section D.5.

To obtain the RSCNN with Architecture 2 (as shown in Table 9), we added modules of Architecture 2 before all RS-Conv:
Maxpooling modules in the RSCNN. Architecture 2 used in this study was an MLP with a single-layer, which contained 32
hidden units. This network was designed to verify the effect of Architecture 2 on the rotation robustness.

To obtain the RSCNN with Architecture 4 (as shown in Table 9), we added the module of Architecture 4 after the RS-Conv:
MLP [512] layer in the RSCNN. This network was designed to verify the effect of Architecture 4 on the rotation robustness.

To obtain the RSCNN with Architecture 3 (as shown in Table 10), we added two blocks after the first Sample layer, i.e.
[Group(0.075, 16)→ RS-Conv: MLP[64, 16]→ RS-Conv: Maxpooling→ RS-Conv: MLP[128] and [Group(0.1, 32)→ RS-Conv: MLP[64, 16]→
RS-Conv: Maxpooling → RS-Conv: MLP[128]. The multi-scale version added another two blocks after the second Sample
layer, i.e. [Group(0.1, 16) → RS-Conv: MLP[32, 128] → RS-Conv: Maxpooling → RS-Conv: MLP[512] and [Group(0.15, 48) →
RS-Conv: MLP[32, 128] → RS-Conv: Maxpooling → RS-Conv: MLP[512]. In this way, the multi-scale version of RSCNN ex-
tracted two more scale features. This network was used to verify the effect of Architecture 3 on the adversarial robustness
and the neighborhood inconsistency.

E. Implementation details about how to extend the entropy-based method [7]
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Figure 2. Illustration of fixed sampling and grouping. fi denotes the pixel value/point-wise feature of pixel/point xi.

In this study, we used the entropy-based method [7] to quantify the layerwise information discarding of DNNs. This
method assumed the feature space of the concept of a specific object satisfied ‖f ′ − f‖2 < ε, where f = h(X), f ′ = h(X ′),
X ′ = X+δ. δ denoted a random noise. For image processing, changing the pixel values would not change the receptive field
of an interneuron, thereby features f and f ′ were computed using the same set of pixels (as shown in Figure 2 (a)). However,
for point cloud processing, changing the coordinates of points would change the “receptive field” of an interneuron, i.e.



Architecture Model ModelNet40 ShapeNet 3D MNIST
w/ w/o w/ w/o w/ w/o

Architecture 1

PointConv 89.02 88.33 98.50 98.53 95.00 95.40
PointNet++ 90.07 89.58 98.82 98.78 96.10 95.00

Point2Sequence 90.35 90.84 98.88 98.57 99.58 93.90
RSCNN 92.02 92.46 98.50 98.40 99.10 99.30

Architecture 2

PointConv 85.94 85.33 96.07 96.59 85.20 89.10
PointNet++ 82.21 85.65 95.82 97.13 82.50 87.10

Point2Sequence 85.49 88.45 93.95 96.63 77.30 87.09
RSCNN 85.72 86.29 95.86 96.88 81.93 82.17

Architecture 3

PointNet++ 89.50 89.58 98.43 98.78 95.60 95.00
RSCNN 92.63 92.46 99.20 98.40 99.23 99.30

Point2Sequence (4 scales vs. 3 scales) 90.84 91.28 98.57 98.71 93.90 94.10
Point2Sequence (4 scales vs. 2 scales) 91.00 98.74 93.00

Architecture 4

PointSIFT 83.27 84.01 96.26 91.68 84.40 90.93
PointNet++ 85.98 85.64 94.40 97.13 88.81 87.10

Point2Sequence 81.20 88.45 93.51 96.63 78.33 87.09
RSCNN 85.03 86.29 97.05 96.88 83.01 82.17

Table 11. Accuracy of different versions of DNNs on ModelNet40, ShapeNet, and 3D MNIST. For DNNs with or without Architecture 2
and Architecture 4, during the training time, all point clouds were rotated by random angles. For DNNs with or without Architecture 1 and
Architecture 3, during the training time, all point clouds were rotated around z-axis. We compared the top-1 accuracy of the network with
and without each specific architecture.

features f and f ′ were computed using contexts of different set of points (as shown in Figure 2 (b)).
To extend the entropy-based method to point cloud processing, we selected the same set of points as the contexts w.r.t.

xi and x′i. In this way, each dimension of f and f ′ were computed based on the same context (as shown in Figure 2 (c)).
To simplify the description, here let f and f ′ denote local features that were computed using contextual information of xi
and x′i, i.e. f = h({fj |j ∈ N(i)}), and f ′ = h({f ′j |j ∈ N′(i)}), where N(i) and N′(i) denoted local regions of xi and x′i.
As shown in Figure 2 (b), changing the coordinates of points would change the “receptive field”, i.e. N′(i) 6= N(i), f ′

and f were computed using different set of points. In order to keep the “receptive field” unchanged, f ′ was computed as
f ′ = h({f ′j |j ∈ N(i)}). In this way, features f and f ′ were computed using information of the same set of points.

F. Classification accuracy comparison of different versions of DNNs
Note that this study does not aim to improve the accuracy of DNNs. This study focuses on the utility analysis of different

network architectures. Table 11 lists the top-1 accuracy comparison results of different versions of DNNs on three different
datasets, including ModelNet40, ShapeNet, and 3D MNIST.

From Table 11 we can see, adding Architecture 1 had relatively equal positive and negative effects on performance. For
PointConv, the network with Architecture 1 performed better than the network without Architecture 1 on the ModelNet40
dataset, while worse on the ShapeNet dataset and the 3D MNIST dataset. For PointNet++, the network with Architecture
1 performed better than the network without Architecture 1 on all three datasets. For Point2Sequence, the network with
Architecture 1 performed better than the network without Architecture 1 on the ShapeNet dataset and the 3D MNIST dataset,
while worse on the ModelNet40 dataset. For RSCNN, the network with Architecture 1 performed better than the network
without Architecture 1 on the ShapeNet dataset, while worse on the ModelNet40 dataset and the 3D MNIST dataset.

Experimental results indicate that adding Architecture 2 to existing DNNs had negative effects on performance. For
PointConv, the network with Architecture 2 performed better than the network without Architecture 2 on the ModelNet40
dataset, while worse on the ShapeNet dataset and the 3D MNIST dataset. For PointNet++, Point2Sequence, and RSCNN,
networks with Architecture 2 performed worse than networks without Architecture 2 on all three datasets.

Experimental results show that adding Architecture 3 had relatively equal positive and negative effects on performance.
For PointNet++, the network with Architecture 3 performed better than the network without Architecture 3 on the 3D MNIST
dataset, while worse on the ModelNet40 dataset and the ShapeNet dataset. For RSCNN, the network with Architecture 3
performed better than the network without Architecture 3 on the ModelNet40 dataset and the ShapeNet dataset, while worse
on the 3D MNIST dataset. For Point2Sequence, removing features extracted from neighborhoods with different scales
decreased the accuracy on the ModelNet40 dataset, while increased the accuracy on the ShapeNet dataset.

Experimental results indicate that, in most cases, adding Architecture 4 to existing DNNs had negative effects on perfor-



mance. For PointSIFT, networks with Architecture 4 performed better than networks without Architecture 4 on the ShapeNet
dataset, while worse than networks without Architecture 4 on the ModelNet40 dataset and the 3D MNIST dataset. For Point-
Net++, networks with Architecture 4 performed better than networks without Architecture 4 on the ModelNet40 dataset and
the 3D MNIST dataset, while worse than networks without Architecture 4 on the ModelNet40 dataset and the ShapeNet
dataset. For Point2Sequence, networks with Architecture 4 performed worse than networks without Architecture 4 on all
three datasets. For RSCNN, the network with Architecture 4 performed better than the network without Architecture 4 on
the ShapeNet dataset and the 3D MNIST dataset, while worse on the ModelNet40 dataset.

G. Relationship with learning interpretable representations
Compared to the visualization or diagnosis of representations, directly learning interpretable representations is more mean-

ingful to improving the transparency of DNNs. In the capsule nets [10, 14], meaningful capsules, which were composed of
a group of neurons, were learned to represent specific entities. [11] learned explainability features with additive nature.
The infoGAN [1] learned disentangled representations for generative models. The β-VAE [3] further developed a measure
to quantitatively compare the degree of disentanglement learnt by different models. [13] proposed an interpretable CNN,
where filters were mainly activated by a certain object part. [2] learned interpretable low-dimensional representations of time
series and provided additional explanatory insights. [8] presented a soft attention mechanism for the reinforcement learning
domain, the interpretable output of which can be used by the agent to decide its action.
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