
Continual Learning via Bit Level Information Preserving (Appendix)

Yujun Shi1 Li Yuan1 Yunpeng Chen2 Jiashi Feng1

1National University of Singapore 2 YITU Technology
{shi.yujun,yuanli}@u.nus.edu yunpeng.chen@yitu-inc.com elefjia@nus.edu.sg

1. Detailed Elaboration on Information Gain Estimation
In this section, we elaborate on how to obtain Eqn.(8) mentioned in the main text.
To start with, recall that we have introduced in the main text that p(θ0:t−1) and p(θ0:t) can be approximated by:

p(θ0:t−1) = N (θ∗0:t−1, (tmF0:t−1)
− 1

2) (1)

and
p(θ0:t) = N (θ∗0:t, ((t+ 1)mF0:t)

− 1
2) (2)

respectively. In addition, relation between F0:t−1 and F0:t is:

F0:t =
tF0:t−1 + Ft

t+ 1
. (3)

Next, recall the definition of information gain on the quantized parameter Q(θ,N) is:

IG(Q(θ,N),Dt) = H(Q(θ0:t−1, N))−H(Q(θ0:t, N)). (4)

To calculate IG(Q(θ,N),Dt), we first connect H(Q(θ,N)) with h(θ), where h(θ) is differential entropy defined as:

h(θ) = −
∫
p(θ) ln p(θ)dθ. (5)

H(Q(θ,N)) and h(θ) can be connected by the following lemma.

Lemma 1. Consider a random variable X with density function p(x) with support of [−1 + 1
2N
, 1 − 1

2N
] and assume

p(x) ln p(x) is Riemann integrable. If we quantize X by N bits with Q defined in the main text, then we have:

H(Q(X,N)) ≈ 1

ln 2
h(X) +N − 1. (6)

Proof. Firstly, we can divide the support ofX , which is [−1+ 1
2N
, 1− 1

2N
], into 2N−1 bins with equal length of δN = 1

2N−1 .
Next, denote the center of the i-th bin as xi and we have: xi = i

2N−1 − 1. We write P (Q(X,N) = xi) with shorthand of
Pi(Q(X,N)) and we have:

Pi(Q(X,N)) =

∫ xi−
δN
2

xi−
δN
2

p(x)dx (property of probability density function)

≈ p(xi)δN (Mean Value Theorem as δN → 0.)

(7)

With the above Eqn. (7), we then rewrite the Shannon entropy of Q(X,N) as:

H(Q(X,N)) = −
2N−1∑
i=1

Pi(Q(X,N)) log2 Pi(Q(X,N))

≈ −
2N−1∑
i=1

p(xi)δN log2 p(xi)δN (applying (7))

= −
2N−1∑
i=1

δNp(xi) log2 p(xi)−
2N−1∑
i=1

δNp(xi) log2 δN

≈ 1

ln 2
h(X) + (N − 1) (Riemann integrable as δN → 0;δN =

1

2N−1
)

(8)

Therefore, the information gain can be rewritten as:

IG(Q(θ,N),Dt) =
1

ln 2
(h(θ0:t−1)− h(θ0:t)). (9)

With the posterior approximation Eqn. 1 and Eqn. 2, h(θ0:t−1) and h(θ0:t) can be calculated in closed-form by 1
2 −

1
2 ln (2πmtF0:t−1) and 1

2 −
1
2 ln (2πm(t+ 1)F0:t) respectively. That means that IG(Q(θ,N),Dt) can be approximated

by:

IG(Q(θ,N),Dt) =
1

ln 2
(h(θ0:t−1)− h(θ0:t))

≈ 1

2 ln 2
ln
m(t+ 1)F0:t

mtF0:t−1

=
1

2
log2

tF0:t−1 + Ft

tF0:t−1
.

(10)

In this way, we derive the Eqn.(8) mentioned in the main text.

2. Implementation Details
2.1. Parameter Range

To perform parameter quantization, we normally have to constraint parameters to be within a certain interval. In the
main text, to more conveniently elaborate our method, we assume model parameters are constrained within [−1, 1] and
then quantize them accordingly. However, in real scenarios, parameters of different layers normally distributed in different
manner. Therefore, we constraint model parameters in the interval of [− C√

n
, C√

n
], where C is a pre-defined hyper-parameter,

and n = num input dimension for fully connected layers and n = kernel size × kernel size × num input channel
for convolution layers. C is set to be 20 for the mini-ImageNet experiments. and 6 for all the other experiments. This strategy
is inspired by previous literature on model parameter initialization [3, 2].

2.2. Trainig Strategy

According to the main text, when trainig on a new task, Straight Through Estimator (STE) is used to perform quantization
aware training. However, since we quantize the model to 20 bits in all our experiments and the difference is insignificant
between whether or not using STE. Therefore, we do not quantize parameters during training and only quantize parameters
before doing bit freezing.

2.3. Information Gain

Empirically, we find that using the following formulation:

IG(Q(θ,N),Dt) =
1

2
log2

tF0:t−1 + Ft

(t+ 1)F0:t−1
(11)

which is slightly different from Eqn. (10), can produce better results. Therefore, we adopt this slightly modified version to
estimate information gain.

For more details, please refer to our released implementation.

3. More Detailed Experiment Results
3.1. More Detailed 20-split mini-ImageNet Results

In this section, we add comparison of model size for the 20-split mini-ImageNet experiment in Tab. 1. All models
are variants of AlexNet. From the table, we show that the model size of all methods are kept approximate to ensure fair
comparisons.

3.2. Experiments on ResNet

In addition, to demonstrate the effectiveness of our method on models with Batch Norm layers and residual connections,
we evaluate our method on ResNet-18 model with 20-split mini-ImageNet. The result is shown in Tab. 2.

3.3. Discussion and Ablation Study of F0

As mentioned in the main text, F0 is an important hyper-parameter for our method. According to our method, smaller
F0 corresponds to more bits being frozen when learning subsequent tasks and vice versa. Therefore, by setting F0 to be
small, our method tends to suffer less forgetting while being less capable of adapting new tasks and vice versa. We ablate
using different F0 with our 20-split mini-ImageNet experiment in Tab. 3. Through this ablation study, we can see that setting
F0 = 5× 10−16 can best balance between preventing forgetting (BWT) and adapting new tasks (ACC).

Table 1. Experiment Results on 20-Split mini-ImageNet. RB is size of replay buffer, MS is model size. Results are averaged over 5 runs;
mean ± std is reported. Results denoted by (†) are provided by [1].

Methods BWT (%) ACC (%) RB (MB) MS (MB)
LWF -45.93 ± 1.05 29.30 ± 0.64 - 104.1
A-GEM† -15.23 ± 1.45 52.43 ± 3.10 110.1 102.6
HAT† -0.04 ± 0.03 59.45 ± 0.05 - 123.6
ACL† -3.71 ± 1.31 57.66 ± 1.44 - 113.1
ACL-R† 0.00 ± 0.00 62.07 ± 0.51 8.5 113.1
BLIP -1.05 ± 0.42 65.69 ± 0.87 - 104.78

Table 2. Experiment Results on 20-split mini-ImageNet with ResNet-18 and AlexNet. MS is Model Size. Arch is model architecture.
Results are averaged over 5 random seeds; mean ± std is reported.

Methods Arch BWT (%) ACC (%) MS (MB)
BLIP AlexNet -1.05 ± 0.42 65.69 ± 0.87 104.78
BLIP ResNet -0.72 ± 0.46 65.94 ± 1.36 42.76

Table 3. Ablation study on F0 with AlexNet and 20-split mini-ImageNet. All results are averaged over 5 random seeds. mean ± std is
reported.

F0 BWT (%) ACC (%)
1× 10−14 -3.60 ± 0.59 65.23 ± 0.87
5× 10−15 -3.01 ± 0.76 65.10 ± 1.16
1× 10−15 -1.55 ± 0.53 65.76 ± 0.81
5× 10−16 -1.05 ± 0.42 65.69 ± 0.87
1× 10−16 -0.26 ± 0.32 64.78 ± 0.96
5× 10−17 -0.17 ± 0.29 64.29 ± 0.82

4. More Visualization on Bit Freezing Process
In this section, we provide more results on the bit freezing process visualization on different layers of our PPO agent in

Fig 1. From the results, the similar phenomenon of more bits getting frozen as mentioned in the main text can be observed.

From the heatmap, we can also see that for some parameters, no bits are frozen throughout the whole continual learning
process. This means that no information gain is observed on these parameters. This phenomenon might correspond to the
nature of ReLU activation function, whose gradient is 0 if the input is negative. However, it is beyond the scope of this work
and we do not provide further discussion on this phenomenon.

In addition, this bit freezing process is further visualized in histogram in Fig. 2.

Conv1

Conv2

Conv3

Figure 1. Bit freezing visualization We visualized bit freezing process as continual learning proceeds on all the convolution layers of our
PPO agent. Each pixel in a heat map represents the number of frozen bits of the corresponding entry (parameter) in weight matrix of a
convolution layer. Each parameter has a total of 20 bits. From darker blue to darker red denotes more bits being frozen.

0 1 2 3 4 5 6 7 8 9 10111213141516171819
number of extra bits frozen

 0

 8

 15

 23

 31

pe
rc

en
t o

f p
ar

am
 (%

)

Init to Task 1

0 1 2 3 4 5 6 7 8 9 10111213141516171819
number of extra bits frozen

 0

 8

 15

 23

 31

 38

 46

pe
rc

en
t o

f p
ar

am
 (%

)

Task 1 to Task 2

0 1 2 3 4 5 6 7 8 9 10111213141516171819
number of extra bits frozen

 0

 15

 31

 46

 61

pe
rc

en
t o

f p
ar

am
 (%

)

Task 2 to Task 3

0 1 2 3 4 5 6 7 8 9 10111213141516171819
number of extra bits frozen

 0

 15

 31

 46

 61

 76

pe
rc

en
t o

f p
ar

am
 (%

)

Task 3 to Task 4

0 1 2 3 4 5 6 7 8 9 10111213141516171819
number of extra bits frozen

 0

 15

 31

 46

 61

pe
rc

en
t o

f p
ar

am
 (%

)

Task 4 to Task 5

0 1 2 3 4 5 6 7 8 9 10111213141516171819
number of extra bits frozen

 0

 15

 31

 46

 61

 76

pe
rc

en
t o

f p
ar

am
 (%

)

Task 5 to Task 6

Figure 2. Bit freezing visualization in histogram Each histogram in this figure shows what percentage of parameters have how many
extra bits frozen after learning one task.

5. Additional Acknowledgement
The authors would also like to thank Jun Hao Liew, Kuangqi Zhou, Minda Hu, Zihang Jiang, Bingyi Kang and all reviewers

for helpful feedback and discussions.

References
[1] Sayna Ebrahimi, Franziska Meier, Roberto Calandra, Trevor Darrell, and Marcus Rohrbach. Adversarial continual learning. In The

European Conference on Computer Vision (ECCV), 2020. 3
[2] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the

thirteenth international conference on artificial intelligence and statistics, pages 249–256. JMLR Workshop and Conference Proceed-
ings, 2010. 2

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing human-level performance on
imagenet classification. In Proceedings of the IEEE international conference on computer vision, pages 1026–1034, 2015. 2

