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1. Statistics of the datasets

Table 1: Numbers of 300-frame raw ASL clips in the
ChicagoFSWild and ChicagoFSWild+ data subsets. The
number of fingerspelling segments in each subset is given
in parentheses.

train dev test
ChicagoFSWild 3539 (6927) 691 (1246) 613 (1102)
ChicagoFSWild+ 13011 (44861) 867 (2790) 885 (1531)

Table 1 provides the numbers of clips and of finger-
spelling segments in the datasets used in our work. Note
that the number of fingerspelling segments is not exactly
same as in [7, 8] due to the 75-frame overlap when we
split raw video into 300-frame clips. On average there
are 1.9/1.8 fingerspelling segments per clip for ChicagoF-
SWild/ChicagoFSWild+. The distributions of durations are
shown in Figure 1.

Figure 1: Distribution of length of fingerspelling segments.

2. Precision-recall curves for frame classifica-
tion

Figure 2 shows the precision-recall curves for frame
classification of the three baseline models and our proposed
model. On the one hand, our approach dominates the others
in terms of these frame-level metrics as well. In addition,
the differences in frame-level performance among the three

baselines are much smaller than the differences in sequence-
level performance reported in the main text.

Figure 2: Precision-recall curves for frame classification of
three baselines and our approach.

3. Comparison with state-of-the-art models for
related tasks

In addition to the baseline models, we compare against
two additional approaches—boundary matching network
(BMN) [5] and multi-stage temporal convolutional network
(MS-TCN) [3]—on our task of fingerspelling detection.
Those two methods are state-of-the-art on temporal action
proposal generation in ActivityNet1.3 [4] and sign language
segmentation [6]. The implementations are based on [1, 2].
For fair comparison, we use the same backbone network as
in the other methods. We use the same network architec-
ture for the individual submodules of the two models and
tune hyperparameters on our datasets. As MS-TCN does
frame classification in principle, we follow the same post-
processing steps as in baseline 1 and 2 to convert frame
probabilities into sequence predictions for evaluation.

As is shown in Table 2, these two approaches do not out-
perform our approach. Comparing BMN and our baseline
3, we notice that the size of the training set has a large
impact. The more complex modeling choices in BMN,
which searches over a wider range of proposals, leads to
better performance mostly when using the larger training
set of ChicagoFSWild+. The discrepancy in performance
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of these two models as measured by different metrics (e.g.,
AP@IoU vs. AP@Acc) also shows that a model with lower
localization error does not always enable more accurate
downstream recognition. The MS-TCN model is gener-
ally better than other frame-based approaches (baseline 1,
2) but remains inferior to region-based approaches includ-
ing baseline 3 and ours. Our post-processing steps lead to
inconsistency between the training objective and evaluation.
Similarly in [6], it is noted that the model sometimes over-
segments fingerspelled words.

Table 2: Performance of BMN and MS-TCN on finger-
spelling detection using our evaluation metrics on the (a)
ChicagoFSWild and (b) ChicagoFSWild+ test sets.

AP@IoU AP@Acc MSAAP@0.1 AP@0.3 AP@0.5 AP@0.0 AP@0.2 AP@0.4

(a) BMN .442 .394 .284 .209 .157 .070 .307
MS-TCN .282 .177 .095 .141 .093 .036 .319

(b) BMN .580 .549 .437 .433 .401 .260 .470
MS-TCN .429 .345 .179 .350 .299 .147 .414

4. Analysis of AP@Acc
Figure 3 shows how varying δIoU and δacc impacts the

value of AP@Acc. The accuracy threshold δacc has a much
larger impact on AP than does δIoU . This is primarily be-
cause a large overlap between predicted and ground-truth
segments is often necessary in order to achieve high accu-
racy. Therefore, we set the default value of δIoU to 0.

Figure 3: AP@Acc with different IoU thresholds on
ChicagoFSWild dev set. Left: baseline 3. Right: our model.

5. Histogram of IoU
Figure 4 shows histograms of IoU of predicted segments

with respect to the ground truth at peak thresholds used in
the MSA computation. Our model has overall higher IoU
than the three baselines. The average IoUs of the three base-
lines and our model for the optimal (peak) threshold δf are
0.096, 0.270, 0.485, and 0.524 respectively. The average

IoUs of baseline 3 and our model suggest that for AP@IoU,
AP@0.5 is more meaningful to compare in terms of recog-
nition performance for those two models.

Figure 4: Histogram of IoU at peak thresholds.

6. Performance breakdown over durations
We separate raw video clips into three categories based

on the duration of the fingerspellng segments: short (<20
frames), medium (20-80 frames), and long (≥80 frames).
This division is based on the statistics of the dataset. The
performance of our model for the three categories is shown
in Table 3, and can be compared to the overall performance
in Table 1 of the paper. Shorter fingerspelling segments
are harder to spot within regular signing. The typical fin-
gerspelling pattern (relatively static arm and fast finger mo-
tion) is less obvious in short segments. In addition, Figure 5
shows the length distribution of false positive and false neg-
ative detections from our model. The length distribution
of false positives roughly matches that of ground-truth seg-
ments in the dataset.

Table 3: Performance on segments of different durations.

AP@IoU AP@Acc MSAAP@0.1 AP@0.3 AP@0.5 AP@0.0 AP@0.2 AP@0.4
Short .411 .346 .235 .149 .140 .051 .357

Medium .675 .671 .623 .476 .361 .156 .435
Long .781 .703 .420 .704 .362 .130 .393

7. Speed test
The inference time per video clip is shown in Table 4.

The speed test is conducted on one Titan X GPU. Inference
times for all models are under 1 second. Baselines 1 and 2
are faster as the model architecture is simpler. Our model
takes roughly twice the time of baseline 3, which is mainly
due to the second-stage refinement.

8. Detection examples
Figure 6 shows various detection examples from the

ChicagoFSWild dev set.

2



Figure 5: Distribution of lengths of false positives and false
negatives.

Table 4: Inference time per 300-frame video clip

Base 1 Base 2 Base 3 Ours
Inference time (ms) 10.9 11.6 284.5 511.1
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Figure 6: Detection examples. Red: ground-truth segment, green: predicted segment. The sequences are downsampled.
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