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1. Joint Probability as Lower Bound
Here we show the relationship between log p(I ′w, w

′)
and the likelihood p(I ′w) =

∫
w
pG2D

(x|w)p(w)dw. In par-
ticular, by introducing an additional encoder q(w), the vari-
ational lower bound [4] is given by:

log p(I ′w) ≥ Ew∼q(w)[log
p(I ′w, w)

q(w)
]. (10)

In the original Variational AutoEncoder [4], q should be a
conditional distribution defined as an image encoder to ap-
proximate the posterior p(w|I ′w). Here, we use the manip-
ulation network to replace the image encoder. Formally,
consider q to be a Gaussian distribution conditioned on
the style code ŵ, perturbation parameters V ′ and L′, i.e.
q(w|M(ŵ, V ′, L′)) = q(w|w′) = N (w′, σ2

w′I), if we fur-
ther consider q to be a deterministic approximation, i.e. σw′

is a fixed value and σw′ → 0, the lower bound in Equa-
tion 10 becomes log p(I ′w, w

′) + c, where c is a constant
and could be omitted.

2. Additional Implementation Details
We use an Adam optimizer [3] with a learning rate of 1e-

4 to train the model. The 3D generator is trained for 30, 000
steps. For the perceptual loss, we average the `2 distance
between the output of relu2 2, relu3 3, relu4 3 to
compute the loss. The feature maps are `2-normalized on
each pixel. Further, the images are downsampled with a
scale of ×1, ×2, ×4 and the perceptual losses are averaged
for different resolutions. For the 3D renderer, we assume a
fov of 10. The output depth maps are normalized between
(0.9, 1.1). The output viewpoint rotation and translation are
normalized between (-60◦,60◦) and (-0.1,0.1), respectively.
The lighting coefficients are normalized to (0,1). For the
perturbation, we empirically sample yaw angles from a uni-
form distribution over [−45◦,45◦], and pitch angles from
[−10◦,10◦]. The roll angle is fixed at 0. For the lighting, we
found it a difficult task for StyleGAN2 to synthesize faces
with manually chosen lighting parameters. Thus, we shuffle

the lighting parameters across the batch. The identity reg-
ularization loss is only applied to faces that are perturbed
with a yaw angle within [−25◦,25◦]. For the identity preser-
vation loss, we train an 18-layer ResNet [1] as the face em-
bedding using the CosFace loss [8] on the CASIA-Webface
dataset [10].

2.1. Network Architectures

The viewpoint decoder DV and light decoder DL are
both 4-layer MLPs with LeakyReLU [6] as activation func-
tion. The latent manipulation network is composed of two
parts, the first part are composed of three 4-layer MLPs to
encode latent code ŵ, viewpoint V0 and light L0, respec-
tively, whose outputs are summed into a feature vector for
the second part. The second part is another 4-layer MLP
that outputs a new style code. The hidden size of all MLPs
in our work is 512, same as the style code. For shape de-
coder DS and transformation decoder DT , we mainly fol-
low the decoder structure of Wu et al. [9], whose details
are shown in Table 1 and Table 2, respectively. In detail,
Conv(cin, cout, k, s) refers to a convolutional layer with cin
input channels, cout output channels, a kernel size of k and
a stride of s. Deconv is defined similarly. “GN” refers to
the group normalization, where the argument is the number
of groups. The “InjectConv” refers to a convolutional layer
that takes the last feature map of 2D generator as input and
injects its output to the decoder via summation. We found
such a design helps to recover the facial details in the depth
map.

2.2. Additional Results

In Figure 1, we show more results of our method and
other baselines for rotating faces into different yaw angles.
Figure 2 shows the results of rotating faces into different
pitch angles. Note that for HoloGAN [7], we use the offi-
cially released code and train the model on our dataset. For
CONFIGNet [5] and DiscoFaceGAN [2], since they involve
additional synthesized data for training, we use their pre-
trained models. Although most baselines are able to gener-
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Shape Decoder Output size

4-layer MLP 512
Deconv(512,512,4,1) + ReLU 512×4×4
Conv(512,512,3,1) + ReLU 512×4×4
Deconv(512,256,4,2) + GN(64) + ReLU 256×8×8
Conv(256,256,3,1) + GN(64) + ReLU 256×8×8
Deconv(256,128,4,2) + GN(32) + ReLU 128×16×16
Conv(128,128,3,1) + GN(32) + ReLU 128×16×16
Deconv(128,64,4,2) + GN(16) + ReLU 64×32×32
Conv(64,64,3,1) + GN(16) + ReLU 64×32×32
Deconv(64,32,4,2) + GN(8) + ReLU 32×64×64
Conv(32,32,3,1) + GN(8) + ReLU 32×64×64
Deconv(32,16,4,2) + GN(4) + ReLU 16×128×128
Conv(16,16,3,1) + GN(4) + ReLU 16×128×128
Upsample(2) + InjectConv(32,161,1) 16×128×128
Conv(16,16,3,1) + GN(4) + ReLU 16×256×256
Conv(16,16,5,1) + GN(4) + ReLU 16×256×256
Conv(16,1,5,1) 1×256×256

Table 1: The architecture of shape decoder.

Transformation Map Decoder Output size

4-layer MLP 512
Deconv(512,512,4,1) + ReLU 512×4×4
Deconv(512,256,4,2) + GN(64) + ReLU 256×8×8
Deconv(256,128,4,2) + GN(32) + ReLU 128×16×16
Deconv(128,64,4,2) + GN(16) + ReLU 64×32×32
Deconv(64,32,4,2) + GN(8) + ReLU 32×64×64
Deconv(32,16,4,2) + GN(4) + ReLU 16×128×128
Upsample(2) + Conv(16,16,3,1) + GN(4) + ReLU 16×256×256
Conv(16,1,5,1) 1×256×256

Table 2: The architecture of transformation map decoder.

ate high-quality face images under near-frontal poses, clear
content change could be observed in larger poses. In par-
ticular, HoloGAN and CONFIGNet generates blurred faces
for larger poses, while the expression changes in the results
of DiscoFaceGAN. In comparison, our method, though also
suffer from quality degradation in larger poses, has a stricter
control in terms of the content. We also provide the FID
score of different methods in Table 3, where our method
achieves second best image quality, even though our images
are re-rendered from 2D generated images.

In Figure 3 and Figure 4, we show additional examples
of rotating generated faces with different yaw and pitch an-
gles, respectively. In brief, we observe that the pre-trained
StyleGAN2 (with our style manipulation network) is able to
change poses to a certain degree, but fails to generate faces
with larger pose angles that do not exist in the training data.
Further, we see a similar trend of expression change when
changing pitch angles as in DiscoFaceGAN, possibly due
to the intrinsic bias in the FFHQ dataset. In contrast, the
3D generator distilled from StyleGAN2 extends this rota-
tion capability to a larger degree with better content preser-
vation.

Method FID↓

HoloGAN et al. [7] 100.28
DiscoFaceGAN et al. [2] 12.90
CONFIGNet et al. [5] 43.05
LiftedGAN (proposed) 29.81

Table 3: Quantitative Evaluation of the generated image quality between
this work and baselines. The scores of “DiscoFaceGAN” and “CON-
FIGNet” are reported in their original papers. The scores of HoloGAN
and our method are computed from sampled images of random poses.
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Figure 1: Qualitative comparison with state-of-the-art methods on 3D-controllable GANs. Note that all these faces are generated by
randomly sampling from latent space, therefore we cannot compare the manipulation over the same face. The example faces are supposed
to have a yaw degree of -60,-45,-30,15,0,15,30,45,60.
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Figure 2: Qualitative comparison with state-of-the-art methods on 3D-controllable GANs. Note that all these faces are generated by
randomly sampling from latent space, therefore we cannot compare the manipulation over the same face. The example faces are supposed
to have a pitch degree of -30,-20,-10,0,10,20,30.
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Figure 3: Results of rotating faces to yaw angles of -60,-45,-30,-15,0,15,30,45,60. For each two rows, the first row shows the results of
generating by manipulating the StyleGAN2 latent style code, while the second row shows the results of 3D rendered faces.
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Figure 4: Results of rotating faces to pitch angles of -30,-20,-10,0,10,20,30. For each two rows, the first row shows the results of generating
by manipulating the StyleGAN2 latent style code, while the second row shows the results of 3D rendered faces.
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