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1. Details of Stability Analysis
Here, we provide the details of stability analysis of point

cloud. Mathematically, given a 3D point set P = {vi,ni}
sampled on the template model surface, we want to find a
rigid transformation [R|t] which minimizes the following
point-to-plane error at all points:

min
[R,t]

∑
i

[(Rvi + t) · ni]
2, (1)

where R and t are rotation and translation, respectively.
The rotation R is nonlinear but can be linearized assum-

ing infinitesimal rotations:

R ≈

 1 −γ β
γ 1 −α
−β α 1

 , (2)

for Euler angles α, β, and γ around the X, Y, and Z axes,
respectively. This reduces the rotation of vi ∈ V by R into
a displacement of it by a vector [r × vi + t], where r =
(α, β, γ). Substituting this into Equation (1), we therefore
aim to find a 6-vector [rT , tT ] that minimizes

min
[r,t]

∑
i

[vi · ni + r · (vi × ni) + t · ni]. (3)

This is a linear least-squares problem which amounts to
solve a linear system Cx = 0 with x = [rT , tT ]. C is a
6 × 6 covariance matrix of the rigid transformation accu-
mulated over all sample points:

C =
∑
i


uix

uiy

uiz

nix

niy

niz


[
uix uiy uiz nix niy niz

]
, (4)

where u = v × n. The covariance matrix C encodes the
increase of the point-to-plane error when the transforma-
tion is moved away from its optimum. The larger the error

increase, the less slippable and more stable along that trans-
formation the shape is. On the contrary, if there is a trans-
formation that causes small increase in the error, the shape
is unstable w.r.t. the corresponding DoFs.

The stability can then be analyzed by calculating the
eigenvalues of C. Let λ1 ≤ λ2 ≤ · · · ≤ λ6 be
the eigenvalues of C. The stability is measured as [1 +

e
0.05

(
λ6
λ1

−200
)
]−1, where λ1 and λ6 are the smallest and

largest eigenvalues of C, respectively. In our method, we
select patch group whose stability measure is greater than
0.5 as the geometrically stable patch group.

2. Details of Training Data

Unlike most of the baselines that were trained on both
the real images with annotations and the synthetic image
rendered by the 3D CAD models, we train StablePose by
leveraging the real images only. To be specific, we use the
real training images of single objects provided in [2] for
T-LESS and the real training images of cluttered scenes
provided in [1] for LineMOD-O. For the training images
of single objects in T-LESS, we add random occlusion and
background to make them more realistic. We experimen-
tally found that training on real data only is sufficient for
StablePose. Nevertheless, it is still possible to further boost
the performance by utilizing some synthetic data.

3. Visual Ablation of Patch-wise Pose Estima-
tion

To further illustrate the effect of the patch-wise pose
estimation component, we qualitatively compare Stable-
Pose with without patch-wise pose estimation baseline on
T-LESS in Figure 1. It shows that StablePose produces
more accurate results on most shown cases, which demon-
strates patch-wise pose estimation indeed provides substan-
tial enhancements for improving object pose accuracy.
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Figure 1: Visual results of 6D object pose estimation by without patch-wise pose estimation baseline and StablePose on
T-LESS.

4. Quantitative Evaluation of Individual Ob-
jects

To further illustrate the strengths and weaknesses of Sta-
blePose on different object types, we provide the quantita-
tive results of individual objects of T-LESS in Figure 2.
The number above each object is the eVSD (VIVO) value of
the corresponding object. The red, green and blue blocks
represent high (0.8-1), middle (0.6-0.8) and low (0-0.6)
eVSD (VIVO) values, respectively. The results show that
StablePose works the best on objects with sufficient num-
ber of large planar and/or cylindrical patches. This verifies
the effects of our network designs that utilize planar and/or
cylindrical patches. The inferior results of composite ob-
jects with multiple parts and objects with concave geometry
are due to the incapability of extracting repeatable patches
from the noisy depth images by the current patch extraction
approach.

5. Quantitative Comparison on
NOCS-REAL275

We compare StablePose with two baselines on
NOCS-REAL275. The baselines are NOCS [4] and
6-pack [3]. Note that while StablePose and NOCS take
single RGBD images as input, 6-pack process RGBD
videos and estimate the object poses of all frames jointly,
which could greatly boost the pose estimation performance.
We use the following evaluation metrics proposed in [4, 3]:
5◦5cm, IoU25, Rerr and Terr. In Table 1, we report the
quantitative results. It shows that StablePose beats all these
baselines in two metrics (5◦5cm, Terr) and achieves com-
parable performances in the others (IoU25, Rerr). This
demonstrates the cross-instance generality of StablePose.
It also reveals that the generality of category-level pose
estimation relies more on geometry instead of appearance.
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Figure 2: Quantitative results of StablePose for individual
objects in T-LESS. The performance is evaluated by eVSD
(VIVO). The red, green and blue blocks correspond to high
(0.8-1), middle (0.6-0.8) and low (0-0.6) eVSD (VIVO) val-
ues, respectively.

6. The ShapeNetPose dataset

6.1. Overview

ShapeNetPose consists of rendered RGBD images of
objects from 22 categories. For each category, 80% and



Table 1: Quantitative comparison on NOCS-REAL275.

Metric NOCS [4] 6-pack [3] StablePose

Bottle

5◦5cm 5.5 24.5 37.0
IoU25 48.7 91.1 94.8
Rerr 25.6 15.6 19.4
Terr 14.4 4.0 4.5

Bowl

5◦5cm 62.2 55.0 76.6
IoU25 99.6 100.0 100.0
Rerr 4.7 5.2 4.0
Terr 1.2 1.7 1.1

Camera

5◦5cm 0.6 10.1 4.3
IoU25 90.6 87.6 85.5
Rerr 33.8 35.7 43.9
Terr 3.1 5.6 4.5

Can

5◦5cm 7.1 22.6 17.2
IoU25 77.0 92.6 90.5
Rerr 16.9 13.9 20.5
Terr 4.0 4.8 4.4

Laptop

5◦5cm 25.5 63.5 80.0
IoU25 94.7 98.1 99.4
Rerr 8.6 4.7 4.8
Terr 2.4 2.5 2.1

Mug

5◦5cm 0.9 24.1 17.7
IoU25 82.8 95.2 92.9
Rerr 31.5 21.3 19.8
Terr 4.0 2.3 3.8

Overall

5◦5cm 17.0 33.3 38.8
IoU25 82.2 94.2 93.9
Rerr 20.2 16.0 18.7
Terr 4.9 3.5 3.4

20% objects are selected for training and testing respec-
tively. All the objects are normalized into a 1m× 1m× 1m
box. Each selected object is rendered from a random view-
point to generate a RGBD image. Random occlusions are
added to each RGBD image. Statistics of ShapeNetPose
is listed in Table 2.

6.2. Evaluation Metrics

The results on ShapeNetPose are evaluated by four
evaluation metrics: 10◦10cm, IoU25, Rerr and Terr as
proposed in [4, 3]. Note that, as ShapeNetPose is a syn-
thetic dataset, to facilitate the evaluation, all the objects in
ShapeNetPose are normalized into a 1m × 1m × 1m
cube.

7. More Visual Results

Besides the quantitative comparisons, we provide
additional visual results by StablePose on T-LESS,
LineMOD-O, NOCS-REAL275 and ShapeNetPose in
Figure 3. In general, we see that StablePose is capable of
handling cases encompassing asymmetric or symmetric ob-
jects, objects with occlusion and unseen objects.

Table 2: Statistics of ShapeNetPose.

Category #Train object #Test object

airplane 500 100
ashcan 200 40

bag 50 10
bathtub 500 100

bed 100 20
bench 500 100
bottle 400 80
bus 500 100

camera 80 16
can 80 16
car 500 100

chair 500 100
display 500 100

earphone 50 10
guitar 500 100
helmet 100 20
lamp 500 100

laptop 300 60
pot 500 100

skateboard 100 20
sofa 500 100
table 500 100
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Manolis Lourakis, and Xenophon Zabulis. T-less: An rgb-d
dataset for 6d pose estimation of texture-less objects. In 2017
IEEE Winter Conference on Applications of Computer Vision
(WACV), pages 880–888. IEEE, 2017. 1

[3] Chen Wang, Roberto Martı́n-Martı́n, Danfei Xu, Jun Lv,
Cewu Lu, Li Fei-Fei, Silvio Savarese, and Yuke Zhu. 6-pack:
Category-level 6d pose tracker with anchor-based keypoints.
In 2020 IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 10059–10066. IEEE, 2020. 2, 3

[4] He Wang, Srinath Sridhar, Jingwei Huang, Julien Valentin,
Shuran Song, and Leonidas J Guibas. Normalized object co-
ordinate space for category-level 6d object pose and size esti-
mation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2642–2651, 2019. 2, 3



T-
LE
SS

Li
n
eM

O
D
-O

N
O
C
S-
R
EA

L2
7
5

Sh
ap
eN

et
Po

se

Figure 3: More visual results of 6D object pose estimation by StablePose on T-LESS, LineMOD-O, NOCS-REAL275 and
ShapeNetPose.


