
Supplementary Material for clDice - a Novel Topology-Preserving Loss Function
for Tubular Structure Segmentation

Suprosanna Shit * 1 Johannes C. Paetzold ∗ 1 Ivan Ezhov1 Anjany Sekuboyina1

Alexander Unger1 Andrey Zhylka2 Josien P. W. Pluim2 Ulrich Bauer1 Bjoern H. Menze1
1Technical University of Munich 2 Eindhoven University of Technology

1. Theory - clDice in Digital Topology
In addition to our Theorem 1 in the main paper, we are

providing intuitive interpretations of clDice from the digital
topology perspective. Betti numbers describe and quantify
topological differences in algebraic topology. The first three
Betti numbers (β0, β1, and β2) comprehensively capture
the manifolds appearing in 2D and 3D topological space.
Specifically,

• β0 represents the number of connected-components,
• β1 represents the number of circular holes, and
• β2 represents the number of cavities (Only in 3D)

Figure 1. Examples of the topology properties. Left, a hole in 2D,
in the middle a hole in 3D and right a cavity inside a sphere in 3D.

Using the concepts of Betti numbers and digital topology
by Kong et al. [3, 6], we formulate the effect of topological
changes between a true binary mask (VL) and a predicted
binary mask (VP ) in Fig. 2. We will use the following defi-
nition of ghosts and misses, see Figure 2.

1. Ghosts in skeleton: We define ghosts in the predicted
skeleton (SP ) when SP 6⊂ VL. This means the pre-
dicted skeleton is not completely included in the true
mask. In other words, there exist false-positives in the
prediction, which survive after skeletonization.

2. Misses in skeleton: We define misses in the predicted
skeleton (SP ) when SL 6⊂ VP . This means the true
skeleton is not completely included in the predicted
mask. In other words, there are false-negatives in the
prediction, which survive after skeletonization.

The false positives and false negatives are denoted by
VP \VL and VL\VP , respectively, where \ denotes a set dif-
ference operation. The loss function aims to minimize both
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errors. We call an error correction to happen when the value
of a previously false-negative or false-positive voxel flips
to a correct value. Commonly used voxel-wise loss func-
tions, such as Dice-loss, treat every false-positive and false-
negative equally, irrespective of the improvement in regards
to topological differences upon their individual error cor-
rection. Thus, they cannot guarantee homotopy equivalence
until and unless every single voxel is correctly classified. In
stark contrast, we show in the following proposition that
clDice guarantees homotopy equivalence under a minimum
error correction.

Proposition 1. For any topological differences between VP
and VL, achieving optimal clDice to guarantee homotopy
equivalence requires a minimum error correction of VP .

Proof. From Fig 2, any topological differences between
VP and VL will result in ghosts or misses in the foreground
or background skeleton. Therefore, removing ghosts and
misses are sufficient conditions to remove topological dif-
ferences. Without the loss of generalizability, we consider
the case of ghosts and misses separately:

For a ghost g ⊂ SP ,∃ a set of predicted voxels E1 ⊂
{VP \ VL} such that VP \ E1 does not create any misses
and removes g. Without the loss of generalizability, let’s
assume that there is only one ghost g. Now, to remove g,
under a minimum error correction of VP , we have to min-
imize |E1|. Let’s say an optimum solution E1min exists.
By construction, this implies that VP \ E1min removes g.

For a miss m ⊂ V {
P ,∃ a set of predicted voxels E2 ⊂

{VL \ VP } such that VP ∪ E2 does not create any ghosts
and removes m. Without the loss of generalizability, let’s
assume that there is only one miss m. Now, to remove
m, under a minimum error correction of VP , we have to
minimize |E2|. Let’s say an optimum solution E2min

exists. By construction, this implies that VP ∪ E2min

removes m.

Thus, in the absence of any ghosts and misses, from
Lemma 1.1, clDice=1 for both foreground and background.
Finally, Therefore, Theorem 1 (from the main paper) guar-
antees homotopy equivalence.

Lemma 1.1. In the absence of any ghosts and misses
clDice=1.



I. New CC  is created

II. CC are merged

III. A CC is deleted

IV. New hole is created

V. Holes are merged

VI. A hole is deleted

VII. New cavity is created

VIII. Cavities are merged

IX. A Cavity is deleted
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Figure 2. Upper part, left, taxonomy of the iff conditions to preserve topology in 3D using the concept of Betti numbers [3, 4]; interpreted
as the necessary violation of skeleton properties for any possible topological change in the terminology of ghosts and misses (upper part
right) . Lower part, intuitive depictions of ghosts and misses in the prediction; for the skeleton of the foreground (left) and the skeleton of
the background (right).

Proof. The absence of any ghosts SP ∈ VL implies
Tprec = 1; and the absence of any misses SL ∈ VP implies
Tsens = 1. Hence, clDice=1.

1.1. Interpretation of the Adaption to Highly Un-
balanced Data According to Digital Topology:

Considering the adaptions we described in the main
text, the following provides analysis on how these assump-
tions and adaptions are funded in the concept of ghosts
and misses, described in the previous proofs. Importantly,
the described adaptions are not detrimental to the perfor-
mance of clDice for our datasets. We attribute this to the
non-applicability of the necessary conditions specific to the
background (i.e. II, IV, VI, VII, and IX in Figure 1), as
explained below:

• II. → In tubular structures, all foreground objects are

eccentric (or anisotropic). Therefore isotropic skele-
tonization will highly likely produce a ghost in the
foreground.

• IV.→ Creating a hole outside the labeled mask means
adding a ghost in the foreground. Creating a hole in-
side the labeled mask is extremely unlikely because no
such holes exist in our training data.

• VI.→ The deletion of a hole without creating a miss is
extremely unlikely because of the sparsity of the data.

• VII.and IX. (only for 3D) → Creating or removing a
cavity is very unlikely because no cavities exist in our
training data.

2. Additional Qualitative Results
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Figure 3. Qualitative results: for the Massachusetts Road dataset and for the DRIVE retina dataset (last row). From left to right, the real image, the label,
the prediction using soft-dice and the predictions using the proposed Lc(α = 0.5), respectively. The first three rows are U-Net results and the fourth row
is an FCN result. This indicates that soft-clDice segments road connections which the soft-dice loss misses. Some, but not all, missed connections are
indicated with solid red arrows, false positives are indicated with red-yellow arrows.
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Figure 4. Qualitative results: 2D slices of the 3D vessel dataset for different sized field of views. From left to right, the real image, the label, the
prediction using soft-dice and the U-Net predictions using Lc(α = 0.4), respectively. These images show that soft-clDice helps to better segment the vessel
connections. Importantly the networks trained using soft-dice over-segment the vessel radius and segments incorrect connections. Both of these errors are
not present when we train including soft-clDice in the loss. Some, but not all, false positive connections are indicated with red-yellow arrows.

3. Comparison to Other Literature:

A recent pre-print proposed a region-separation ap-
proach, which aims to tackle the issue by analysing discon-
nected foreground elements [5]. Starting with the predicted
distance map, a network learns to close ambiguous gaps by
referring to a ground truth map which is dilated by a five-
pixel kernel, which is used to cover the ambiguity. How-
ever, this does not generalize to scenarios with a close or

highly varying proximity of the foreground elements (as is
the case for e.g. capillary vessels, synaptic gaps or irregular
road intersections). Any two foreground objects which are
placed at a twice-of-kernel-size distance or closer to each
other will potentially be connected by the trained network.
This is facilitated by the loss function considering the gap
as a foreground due to performing dilation in the training
stage. Generalizing their approach to smaller kernels has
been described as infeasible in their paper [5].



4. Datasets and Training Routine

For the DRIVE vessel segmentation dataset, we perform
three-fold cross-validation with 30 images and deploy the
best performing model on the test set with 10 images. For
the Massachusetts Roads dataset, we choose a subset of 120
images (ignoring imaged without a network of roads) for
three-fold cross-validation and test the models on the 13 of-
ficial test images. For CREMI, we perform three-fold cross-
validation on 324 images and test on 51 images. For the 3D
synthetic dataset. we perform experiments using 15 vol-
umes for training, 2 for validation, and 5 for testing. For the
Vessap dataset, we use 11 volumes for training, 2 for vali-
dation and 4 for testing. In each of these cases, we report
the performance of the model with the highest clDice score
on the validation set.

5. Network Architectures

We use the following notation: In(input channels),
Out(output channels),
B(output channels) present input, output, and bottleneck
information(for U-Net); C(filter size, output channels)
denote a convolutional layer followed by ReLU and batch-
normalization; U(filter size, output channels) denote
a trans-posed convolutional layer followed by ReLU and
batch-normalization; ↓ 2 denotes maxpooling; ⊕ indicates
concatenation of information from an encoder block. We
had to choose a different FCN architecture for the Mas-
sachusetts road dataset because we realize that a larger
model is needed to learn useful features for this complex
task.

5.1. Drive Dataset

5.1.1 FCN :

IN(3 ch) → C(3, 5) → C(5, 10) → C(5, 20) →
C(3, 50)→ C(1, 1)→ Out(1)

5.1.2 Unet :

ConvBlock : CB(3, out size) ≡ C(3, out size) →
C(3, out size)→↓ 2

UpConvBlock: UB(3, out size) ≡ U(3, out size) →
⊕→ C(3, out size)

Encoder : IN(3 ch) → CB(3, 64) → CB(3, 128) →
CB(3, 256)→ CB(3, 512)→ CB(3, 1024)→ B(1024)

Decoder : B(1024) → UB(3, 1024) → UB(3, 512) →
UB(3, 256)→ UB(3, 128)→ UB(3, 64)→ Out(1)

5.2. Road Dataset

5.2.1 FCN :

IN(3 ch) → C(3, 10) → C(5, 20) → C(7, 30) →
C(11, 30) → C(7, 40) → C(5, 50) → C(3, 60) →
C(1, 1)→ Out(1)

5.2.2 Unet :

Same as Drive Dataset, except we used 2x2 up-convolutions
instead of bilinear up-sampling followed by a 2D-
convolution with kernel size 1.

5.3. Cremi Dataset

5.3.1 Unet :

Same as Road Dataset.

5.4. 3D Dataset

5.4.1 3D FCN :

IN(1 or 2 ch) → C(3, 5) → C(5, 10) → C(5, 20) →
C(3, 50)→ C(1, 1)→ Out(1)

5.4.2 3D Unet :

ConvBlock : CB(3, out size) ≡ C(3, out size) →
C(3, out size)→↓ 2

UpConvBlock: UB(3, out size) ≡ U(3, out size) →
⊕→ C(3, out size)

Encoder : IN(1 or 2 ch) → CB(3, 32) → CB(3, 64) →
CB(3, 128)→ CB(5, 256)→ CB(5, 512)→ B(512)

Decoder : B(512) → UB(3, 512) → UB(3, 256) →
UB(3, 128)→ UB(3, 64)→ UB(3, 32)→ Out(1)

Table 1. Total number of parameters for each of the architectures
used in our experiment.

Dataset Network Number of parameters
Drive FCN 15.52K

UNet 28.94M
Road FCN 279.67K
Cremi UNet 31.03M

3D FCN 2ch 58.66K
Unet 2ch 19.21M



6. Soft Skeletonization Algorithm
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Figure 5. Scheme of our proposed differentiable skeletonization.
On the top left the mask input is fed. Next, the input is reatedly
eroded and dilated. The resulting erosions and dilations are com-
pared to the image before dilation. The difference between thise
images is part of the skeleton and will be added iteratively to ob-
tain a full skeletonization. The ReLu operation eliminates pixels
that were generated by the dilation but are not part of the oirginal
or eroded image.

7. Code for the clDice similarity measure and
the soft-clDice loss (PyTorch):

7.1. clDice measure

from sk image . morphology import s k e l e t o n i z e
import numpy as np
def c l s c o r e ( v , s ) :

re turn np . sum ( v* s ) / np . sum ( s )
def c l D i c e ( v p , v l ) :

t p r e c = c l s c o r e ( v p , s k e l e t o n i z e ( v l ) )
t s e n s = c l s c o r e ( v l , s k e l e t o n i z e ( v p ) )
re turn 2* t p r e c * t s e n s / ( t p r e c + t s e n s )

7.2. soft-skeletonization in 2D

import t o r c h . nn . f u n c t i o n a l a s F
def s o f t e r o d e ( img ) :

p1 = −F . max pool2d ( − img , ( 3 , 1 ) , ( 1 , 1 ) , ( 1 , 0 ) )
p2 = −F . max pool2d ( − img , ( 1 , 3 ) , ( 1 , 1 ) , ( 0 , 1 ) )
re turn t o r c h . min ( p1 , p2 )

def s o f t d i l a t e ( img ) :
re turn F . max pool2d ( img , ( 3 , 3 ) , ( 1 , 1 ) , ( 1 , 1 ) )

def s o f t o p e n ( img ) :
re turn s o f t d i l a t e ( s o f t e r o d e ( img ) )

def s o f t s k e l ( img , i t e r ) :
img1 = s o f t o p e n ( img )
s k e l = F . r e l u ( img−img1 )
f o r j in range ( i t e r ) :

img = s o f t e r o d e ( img )
img1 = s o f t o p e n ( img )
d e l t a = F . r e l u ( img−img1 )
s k e l = s k e l + F . r e l u ( d e l t a − s k e l * d e l t a )

re turn s k e l

7.3. soft-skeletonization in 3D

import t o r c h . nn . f u n c t i o n a l a s F

def s o f t e r o d e ( img ) :
p1 = −F . max pool3d ( − img , ( 3 , 1 , 1 ) , ( 1 , 1 , 1 ) , ( 1 , 0 , 0 ) )
p2 = −F . max pool3d ( − img , ( 1 , 3 , 1 ) , ( 1 , 1 , 1 ) , ( 0 , 1 , 0 ) )
p3 = −F . max pool3d ( − img , ( 1 , 1 , 3 ) , ( 1 , 1 , 1 ) , ( 0 , 0 , 1 ) )

re turn t o r c h . min ( t o r c h . min ( p1 , p2 ) , p3 )

def s o f t d i l a t e ( img ) :
re turn F . max pool3d ( img , ( 3 , 3 , 3 ) , ( 1 , 1 , 1 ) , ( 1 , 1 , 1 ) )

def s o f t o p e n ( img ) :
re turn s o f t d i l a t e ( s o f t e r o d e ( img ) )

def s o f t s k e l ( img , i t e r ) :
img1 = s o f t o p e n ( img )
s k e l = F . r e l u ( img−img1 )
f o r j in range ( i t e r ) :

img = s o f t e r o d e ( img )
img1 = s o f t o p e n ( img )
d e l t a = F . r e l u ( img−img1 )
s k e l = s k e l + F . r e l u ( d e l t a − s k e l * d e l t a )

re turn s k e l

8. Evaluation Metrics
As discused in the text, we compare the performance of var-
ious experimental setups using three types of metrics: vol-
umetric, graph-based and topology-based.

8.1. Overlap-based:

Dice coefficient, Accuracy and clDice, we calculate
these scores on the whole 2D/3D volumes. clDice is calcu-
lated using a morphological skeleton (skeletonize3D from
the skimage library).

8.2. Graph-based:

We extract graphs from random patches of 64×64 pixels
in 2D and 48× 48× 48 in 3D images.

For the StreetmoverDistance (SMD) [1] we uniformly
sample a fixed number of points from the graph of the pre-
diction and label, match them and calculate the Wasserstein-
distance between these graphs. For the junction-based met-
ric (Opt-J) we compute the F1 score of junction-based met-
rics, recently proposed by [2]. According to their paper
this metric is advantageous over all previous junction-based
metrics as it can account for nodes with an arbitrary number



of incident edges, making this metric more sensitive to end-
points and missed connections in predicted networks. For
more information please refor to their paper.

8.3. Topology-based:

For topology-based scores we calculate the Betti Errors
for the Betti Numbers β0 and β1. Also, we calculate the
Euler characteristic, χ = V −E+F , whereE is the number
of edges, F is the number of faces and V is the number of
vertices. We report the relative Euler characteristic error
(χratio), as the ratio of the χ of the predicted mask and
that of the ground truth. Note that a χratio closer to one is
preferred. All three topology-based scores are calculated on
random patches of 64 × 64 pixels in 2D and 48 × 48 × 48
in 3D images.

9. Additional Quantitative Results

Table 2. Quantitative experimental results for the 3D synthetic
vessel dataset. Bold numbers indicate the best performance. We
trained baseline models of binary-cross-entropy (BCE), softDice
and mean-squared-error loss (MSE) and combined them with our
soft-clDice and varied the α > 0. For all experiments we observe
that using soft-clDice in Lc results in improved scores compared
to soft-Dice. This improvement holds for almost α > 0. We
observe that soft-clDice can be efficiently combined with all three
frequently used loss functions.

Loss Dice clDice
BCE 99.81 98.24
Lc, α = 0.5 99.76 98.25
Lc, α = 0.4 99.77 98.29
Lc, α = 0.3 99.76 98.20
Lc, α = 0.2 99.78 98.29
Lc, α = 0.1 99.82 98.39
Lc, α = 0.01 99.83 98.46
Lc, α = 0.001 99.85 98.42
soft-Dice 99.74 97.07
Lc, α = 0.5 99.74 97.53
Lc, α = 0.4 99.74 97.07
Lc, α = 0.3 99.80 98.13
Lc, α = 0.2 99.74 97.08
Lc, α = 0.1 99.74 97.08
Lc, α = 0.01 99.74 97.07
Lc, α = 0.001 99.74 97.12
MSE 99.71 97.03
Lc, α = 0.5 99.62 98.22
Lc, α = 0.4 99.65 97.04
Lc, α = 0.3 99.67 98.16
Lc, α = 0.2 99.70 97.10
Lc, α = 0.1 99.74 98.21
Lc, α = 0.01 99.82 98.32
Lc, α = 0.001 99.84 98.37
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