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In this supplementary material we report additional de-
tails of the toy experiment in Sec. 1. In Sec. 2 we provide
additional details for the co-part segmentation experiment.
We provide additional implementation details in Sec. 3. Ad-
ditionally in Sec. 4 we visually demonstrate the ability of
the model to control the background. Finally in Sec. 5 we
describe the TED-talks data collection procedure.

1. Toy Experiment Details

The rotated rectangles dataset consists of images of rect-
angles randomly rotated from 0◦ to 90◦, along with labels
that indicate the angle of rotation. The rectangles have dif-
ferent, random colors. Visual samples are shown in Fig. 1.

We tested three different networks: Naive, Regression-
based and PCA-based. The Naive network directly pre-
dicts an angle from an image using an encoder and a fully-
connected layer. Regression-based is similar to FOMM [5];
the angle is regressed per pixel an using hourglass network,
and pooled according to heatmap weights predicted using
the same hourglass network. PCA-based is our method,
described in Sec. 3.2 (in the main paper). We predict the
heatmap using an hourglass network, PCA is performed
according to Eq. (6) (in the main paper), and the angle is
computed from matrix U as arctan(U10/U00).

Each of the networks was trained, on subsets of the dataset
of varying sizes, to minimize the L1 loss between predicted
and ground truth rotation angle. All models were trained for
100 epochs, with batch size 8. We used the Adam optimizer,
with a learning rate of 10−4. We varied the size of the
training set from 32 to 1024. Results, on a separate, fixed
test set of size 128, were then computed, shown in Fig. 5 (in
the main paper).

2. Co-part segmentation details

To perform co-part segmentation we use Mk. A pixel z is
assigned to the part that has the maximum heatmap response
for that pixel, i.e. argmaxkM

k(z). Moreover, since our
region predictor did not explicitly the predict background
region, we assign pixel z to the background iff

∑
k M

k(z) <
0.001. We demonstrate additional qualitative comparisons

Figure 1: Examples of synthetic rectangle dataset.

with MSCS [6] and SCOPS [1] in Fig. 2. It shows that our
method produces more meaningful co-part segmentations
compared to SCOPS [1], and separates the foreground object
from the background more accurately than MSCS [6].

Similarly to MSCS [6], we can exploit the generated
segmentations by performing a part swap. In Fig. 3 we copy
the cloth from the person in the source image on to the person
in the driving video.

3. Implementation details
For a fair comparison, in order to highlight our contribu-

tions, we mostly follow the architecture design of FOMM [5].
Similar to FOMM, our region predictor, background motion
predictor and pixel-wise flow predictor operate on a quarter
of the original resolution, e.g. 64 × 64 for 256 × 256 im-
ages, 96× 96 for 384× 384 and 128× 128 for 512× 512.
We use the U-Net [4] architecture with five "convolution -
batch norm - ReLU - pooling" blocks in the encoder and five
"upsample - convolution - batch norm - ReLU" blocks in
the decoder for both the region predictor and the pixel-wise
flow predictor. For the background motion predictor, we
use only five block encoder part. Similarly to FOMM [5],
we use the Johnson architecture [2] for image generation,
with two down-sampling blocks, six residual-blocks, and
two up-sampling blocks. However, we add skip connections
that are warped and weighted by the confidence map. Our
method is trained using Adam [3] optimizer with learning
rate 2e−4 and batch size 48, 20, 12 for 256×256, 384×384
and 512× 512 resolutions respectively. During the training
process, the networks observe 3M source-driving pairs, each
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Figure 2: Additional qualitative co-part segmentation comparisons with recent methods. First column is an input. In next
columns, for every method segmentation mask and image with overlayed segmentation are shown.

pair selected at random from a random video chunk, and we
drop the learning rate by a factor of 10 after 1.8M and 2.7M
pairs. We use 4 Nvidia P100 GPUs for training.

The shape-pose disentanglement network consists of 2
identical encoders and 1 decoder. Each encoder consists of
3 "linear - batch norm -ReLU" blocks, with the number of
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Figure 3: Examples of cloth swap performed using our
model. First column depicts sources from which cloth is
taken, while the first row shows a driving video to which we
put the cloth. Rest demonstrates images generated with our
model.

hidden units equal to 256, 512, 1024, and another linear layer
with the number of units equal to 64. The decoder takes a
concatenated input from the encoders and applies 3 "linear -
batch norm - ReLU" blocks, with sizes 1024, 512, 256. The
network is trained on 1M source-driving pairs, organized in
batches of 256 images. We use the Adam optimizer with
learning rate 1e− 3 and drop the learning rate at 660K and
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Figure 4: Visualizations of background movement. From
top to bottom we show driving frame, still background, back-
ground that moves left, moves right and rotates counterclock-
wise.

880K pairs.

4. Background movement

The primary purpose of background modelling is to free
up the capacity of the network to better model the object
during training from video. For animating articulated objects
from a static image at test time, background motion is usually
not desired. Thus, though we estimate background motion in
the driving video, we set it to zero during animation. How-
ever, nothing in our framework prevents us from controlling
camera motion. Below we show a still background, then
move it left, right, and rotate counterclockwise.
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5. TED-talks dataset creation
In order to create the TED-talks dataset, we downloaded

3,035 YouTube videos, shared under the “CC BY – NC –
ND 4.0 International” license,1 using the query “TED talks”.
From these initial candidates, we selected the videos in
which the upper part of the person is visible for at least
64 frames, and the height of the person bounding box was at
least 384 pixels. After that, we manually filtered out static
videos and videos in which a person is doing something
other than presenting. We ended up with 411 videos, and
split these videos in 369 training and 42 testing videos. We
then split each video into chunks without significant camera
changes (e.g. with no cuts to another camera), and for which
the presenter did not move too far from their starting position
in the chunk. We cropped a square region around the pre-
senter, such that they had a consistent scale, and downscaled
this region to 384×384 pixels. Chunks that lacked sufficient
resolution to be downscaled, or had a length shorter than
64 frames, were removed. Both the distance moved and
the region cropping were achieved using a bounding box
estimator for humans [7]. Using this process, we obtained
1,177 training video chunks and 145 test videos chunks.
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