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In this supplementary material, we provide the details of
our method and additional results.

1. The details of generating the geodesic flow

Below, we explain the details on how to generate the
geodesic flow in § 4 (main submission). Recall the subspaces
from the old model P;_1, the current model P;, and the
orthogonal complement R are used to compute the geodesic
flow at v:

M(v) = [P, R] {_UI;};E(?Z)] . (1)
We decompose PtT_lPt and R' P, via the generalized
SVD [ 1] to obtain the orthonormal matrices Uy and U 5:
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All intermediate time steps v € (0, 1) on the geodesic
path are used for feature projection IT(v) " z for obtaining
the similarity in our distillation loss. We note that it is
not necessary to compute or store all projection into the
intermediate subspace because a closed form solution can be
computed as follows:
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We can calculate A1, Ay, and A3 by using diagonal elements
of I'(1) and calculating w; = arccos(vy;). Note that, the
value of ; is clamped between -1 and 1 for computational
stability.

Algorithm A1 provides details of how we generate the
geodesic flow.

Algorithm A1 Generate the Geodesic Flow

Input: The subspaces of the old model P;_; and the current
model P,

1: Get the orthogonal complement R of P;_;

2: Compute A= P, P,and B=R' P,

Decompose A, B using gen. SVD to obtain
X, T,U,,U,

Compute w from the diag. elements of I'(1)

Compute A1, A2, and A3 using Eq. 5.

Compute @ using the closed-form solution in Eq. 3
Return the generated geodesic flow Q

[95]
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2. Additional results

We show on ImageNet-subset that our method improves
the basic approach for IL without considering additional
loss functions or exemplars selection. We follow the setup
in § 5.3 in the main paper where only the cross-entropy
loss and the herding selection mechanism [2] are used for
exemplars. The comparison is made between our method
(GeoDL) and the prior knowledge distillation approaches
proposed in LwF [3] and LUCIR [4] given multiple numbers
of tasks and several classifiers. The distillation losses in
LwF [3] and LUCIR [4] are referred to as Lrwr and Lces,
respectively.

Impact of increasing the number of exemplars in the
memory. We investigate the accuracy of IL on ImageNet-
subset with 20, 40, 60, 80, 100 exemplars in the memory.
The setup is similar to that of where we investigate the im-
pact of different classifiers but we only apply IL with 10
tasks. We also compare our method to the baseline training
without any distillation loss Lo g.

Table A1 shows that our method outperforms the other
knowledge distillation techniques under all memory sizes.
Using 20 exemplars in the memory, our method LgeopL
outperforms the feature distillation loss L and the pre-
diction distillation loss Lces by 1.6% and 7.4%, respectively.
Unlike on CIFAR-100, AME obtains the highest accuracy
under most memory sizes on ImageNet-subset. We also note
that using more exemplars in the memory helps close the
performance gap between training the model without and



with a distillation loss.

Average accuracy (%)

Method Classifier Memory size per class

20 40 60 30 100

CNN 46.89  56.53  60.84  63.57  66.06

Lcg k-NME 5522 61.16 6426  66.03 68.19
AME 60.65 6440 6672  67.81 69.58

CNN 4939  57.17  61.74 6466  66.73

Lcg + Liwr [3] k-NME 5937 6496 6755  68.71 70.40
AME 64.67 6785 6935  70.00 71.32

CNN 65.41 6838 7052  71.51 72.77

Lk + Los [4] k-NME 6705 6880 7077 7114  72.61

AME 70.38 7029  71.78 71.65 73.21

CNN 59.81 66.09  68.68 70.58 72.04
k-NME 7037 7224 7332 7371 74.28
AME 72.01 73.00 73.57 7376 7425

Lce + LéeodL

Table Al: The average accuracy for 10 tasks on ImageNet-
subset by varying the number of exemplars in the memory.
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Figure Al: The CCA similarity score between the feature
extractor at a specific time 6; and the base model 6 on
CIFAR-100. The score is computed based on the feature
outputs in the last layer of 8; and 6.
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Figure A2: The CCA similarity score between the feature
extractor at a specific time 6; and the base model 6, on
ImageNet-subset. The score is computed based on the fea-
ture outputs in the last layer of 8; and 6.

Analyzing the similarity between models. As we observe
that different classifiers may yield different accuracy for IL

tasks. In this experiment, we explore the similarity notion
between the current model and the old model using Canoni-
cal Correlation Analysis (CCA) in [5], as a tool to analyze
the representation of deep models. We evaluate the score
based on the current model at a specific time 8; and the base
model 6y with the samples coming from the base classes.
The high CCA scores show that the model is less-forgetting.
Fig. A1 shows that the CCA similarity on CIFAR-100 using
our approach is the highest compared to training the model
with the other distillation losses Lr,wr and Lcos. We also
note that our approach results in the highest CCA similarity
between the current feature extractor 8; and the base model
6o, as shown in Fig. A2. The high CCA similarity scores
indicate that the current model at time ¢ still highly preserves
the representations from the base model (evaluated on the
samples of the base classes).

Time and memory consumption. Below, we discuss the
time complexity of our approach. The time complexity to
obtain a subspace using a standard SVD [1] costs O(n?d).
Obtaining the geodesic flow (Eq. 4) costs O(nd). Our
operations are more costly than the less-forget operations [4]
which enjoy O(d) complexity. The time for one iteration
using our method is 1.4 x and 1.3 x slower compared to using
the distillation losses in LwF [3] and LUCIR [4], respectively.
In addition, our approach does not require additional memory
to store the exemplars. For the computational memory using
NVIDIA GTX Titan X, the whole process of our method
requires 2.4GB while training processes with Lo, and L wr
require 2.1GB and 1.7GB, respectively.

Initialization with less number of classes. The results of
our method for 50 classes and 10 classes initialization are
62.8% and 60.5%, respectively, while the results of LUCIR
are 60.5% (50 classes) and 57.3% (10 classes).
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