
On Learning the Geodesic Path for Incremental Learning

(Supplementary Material)

Christian Simon†,§ Piotr Koniusz§,† Mehrtash Harandi♣,§

†The Australian National University, ♣Monash University, §Data61-CSIRO

firstname.lastname@{anu.edu.au,monash.edu,data61.csiro.au}

In this supplementary material, we provide the details of

our method and additional results.

1. The details of generating the geodesic flow

Below, we explain the details on how to generate the

geodesic flow in § 4 (main submission). Recall the subspaces

from the old model P t−1, the current model P t, and the

orthogonal complement R are used to compute the geodesic

flow at ν:

Π(ν) =
[

P t−1 R
]

[

U1Γ(ν)
−U2Σ(ν)

]

. (1)

We decompose P⊤

t−1P t and R⊤P t via the generalized

SVD [1] to obtain the orthonormal matrices U1 and U2:

P⊤

t−1P t = U1Γ(1)V
⊤,

R⊤P t = −U2Σ(1)V ⊤.
(2)

All intermediate time steps ν ∈ (0, 1) on the geodesic

path are used for feature projection Π(ν)⊤z for obtaining

the similarity in our distillation loss. We note that it is

not necessary to compute or store all projection into the

intermediate subspace because a closed form solution can be

computed as follows:

Q = ∆

[

λ1 λ2

λ2 λ3

]

∆
⊤, (3)

where:

∆ =
[

P t−1U1 R U2

]

, (4)

λ1i = 1 +
sin(2ωi)

2ωi

,

λ2i =
cos(2ωi)− 1

2ωi

,

λ3i = 1−
sin(2ωi)

2ωi

.

(5)

We can calculate λ1,λ2, and λ3 by using diagonal elements

of Γ(1) and calculating ωi = arccos(γi). Note that, the

value of γi is clamped between -1 and 1 for computational

stability.

Algorithm A1 provides details of how we generate the

geodesic flow.

Algorithm A1 Generate the Geodesic Flow

Input: The subspaces of the old model P t−1 and the current

model P t

1: Get the orthogonal complement R of P t−1

2: Compute A = P⊤

t−1P t and B = R⊤P t

3: Decompose A,B using gen. SVD to obtain

Σ,Γ,U1,U2

4: Compute ω from the diag. elements of Γ(1)
5: Compute λ1,λ2, and λ3 using Eq. 5.

6: Compute Q using the closed-form solution in Eq. 3

7: Return the generated geodesic flow Q

2. Additional results

We show on ImageNet-subset that our method improves

the basic approach for IL without considering additional

loss functions or exemplars selection. We follow the setup

in § 5.3 in the main paper where only the cross-entropy

loss and the herding selection mechanism [2] are used for

exemplars. The comparison is made between our method

(GeoDL) and the prior knowledge distillation approaches

proposed in LwF [3] and LUCIR [4] given multiple numbers

of tasks and several classifiers. The distillation losses in

LwF [3] and LUCIR [4] are referred to as LLwF and LCos,

respectively.

Impact of increasing the number of exemplars in the

memory. We investigate the accuracy of IL on ImageNet-

subset with 20, 40, 60, 80, 100 exemplars in the memory.

The setup is similar to that of where we investigate the im-

pact of different classifiers but we only apply IL with 10

tasks. We also compare our method to the baseline training

without any distillation loss LCE .

Table A1 shows that our method outperforms the other

knowledge distillation techniques under all memory sizes.

Using 20 exemplars in the memory, our method LGeoDL

outperforms the feature distillation loss LLwF and the pre-

diction distillation loss LCos by 1.6% and 7.4%, respectively.

Unlike on CIFAR-100, AME obtains the highest accuracy

under most memory sizes on ImageNet-subset. We also note

that using more exemplars in the memory helps close the

performance gap between training the model without and

1



with a distillation loss.

Method Classifier

Average accuracy (%)

Memory size per class

20 40 60 80 100

LCE

CNN 46.89 56.53 60.84 63.57 66.06

k-NME 55.22 61.16 64.26 66.03 68.19

AME 60.65 64.40 66.72 67.81 69.58

LCE + LLwF [3]

CNN 49.39 57.17 61.74 64.66 66.73

k-NME 59.37 64.96 67.55 68.71 70.40

AME 64.67 67.85 69.35 70.00 71.32

LCE + LCos [4]

CNN 65.41 68.38 70.52 71.51 72.77

k-NME 67.05 68.80 70.77 71.14 72.61

AME 70.38 70.29 71.78 71.65 73.21

LCE + LGeoDL

CNN 59.81 66.09 68.68 70.58 72.04

k-NME 70.37 72.24 73.32 73.71 74.28

AME 72.01 73.00 73.57 73.76 74.25

Table A1: The average accuracy for 10 tasks on ImageNet-

subset by varying the number of exemplars in the memory.

50 60 70 80 90 100

Classes

0.70

0.75

0.80

0.85

0.90

C
C

A
 S

im
il
a
ri

ty

Figure A1: The CCA similarity score between the feature

extractor at a specific time θt and the base model θ0 on

CIFAR-100. The score is computed based on the feature

outputs in the last layer of θt and θ0.

50 60 70 80 90 100

Classes

0.60

0.65

0.70

0.75

0.80

0.85

C
C

A
 S

im
il
a
ri

ty

Figure A2: The CCA similarity score between the feature

extractor at a specific time θt and the base model θ0 on

ImageNet-subset. The score is computed based on the fea-

ture outputs in the last layer of θt and θ0.

Analyzing the similarity between models. As we observe

that different classifiers may yield different accuracy for IL

tasks. In this experiment, we explore the similarity notion

between the current model and the old model using Canoni-

cal Correlation Analysis (CCA) in [5], as a tool to analyze

the representation of deep models. We evaluate the score

based on the current model at a specific time θt and the base

model θ0 with the samples coming from the base classes.

The high CCA scores show that the model is less-forgetting.

Fig. A1 shows that the CCA similarity on CIFAR-100 using

our approach is the highest compared to training the model

with the other distillation losses LLwF and LCos. We also

note that our approach results in the highest CCA similarity

between the current feature extractor θt and the base model

θ0, as shown in Fig. A2. The high CCA similarity scores

indicate that the current model at time t still highly preserves

the representations from the base model (evaluated on the

samples of the base classes).

Time and memory consumption. Below, we discuss the

time complexity of our approach. The time complexity to

obtain a subspace using a standard SVD [1] costs O(n2d).
Obtaining the geodesic flow (Eq. 4) costs O(nd). Our

operations are more costly than the less-forget operations [4]

which enjoy O(d) complexity. The time for one iteration

using our method is 1.4× and 1.3× slower compared to using

the distillation losses in LwF [3] and LUCIR [4], respectively.

In addition, our approach does not require additional memory

to store the exemplars. For the computational memory using

NVIDIA GTX Titan X, the whole process of our method

requires 2.4GB while training processes with LCos, and LLwF

require 2.1GB and 1.7GB, respectively.

Initialization with less number of classes. The results of

our method for 50 classes and 10 classes initialization are

62.8% and 60.5%, respectively, while the results of LUCIR

are 60.5% (50 classes) and 57.3% (10 classes).

References

[1] C. F. Van Loan, “Generalizing the singular value decomposi-

tion,” SIAM Journal on numerical Analysis, vol. 13, no. 1, pp.

76–83, 1976. 1, 2

[2] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert,

“icarl: Incremental classifier and representation learning,” in

Proceedings of the IEEE conference on Computer Vision and

Pattern Recognition, 2017, pp. 2001–2010. 1

[3] Z. Li and D. Hoiem, “Learning without forgetting,” IEEE trans-

actions on pattern analysis and machine intelligence, vol. 40,

no. 12, pp. 2935–2947, 2017. 1, 2

[4] S. Hou, X. Pan, C. C. Loy, Z. Wang, and D. Lin, “Learning a

unified classifier incrementally via rebalancing,” in Proceed-

ings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), June 2019. 1, 2

[5] M. Raghu, J. Gilmer, J. Yosinski, and J. Sohl-Dickstein, “Svcca:

Singular vector canonical correlation analysis for deep learning

dynamics and interpretability,” in Advances in Neural Informa-

tion Processing Systems, 2017, pp. 6076–6085. 2


