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Method Accuracy IoU
Huang et al. [3] 45.41 27.21

Semantic Guidance (Ours) 69.26 48.15

Table 1. Semantic Similarity Results on CUB-200 Birds. The
semantic segmentation maps (refer Appendix A.1) for the can-
vases generated using our method, result in much better segmen-
tation accuracy and Intersection over Union (IoU) scores.

A. Quantitive Results

A.1. Measuring Semantic Similarity.

The inadequacy of the frequently used pixel-wise l2 dis-
tance [2, 3] in capturing semantic similarity, poses a ma-
jor challenge in performing a quantitative evaluation of our
method. In order to address this, we present a novel ap-
proach to quantitatively evaluate the semantic similarity be-
tween the generated canvases and the target image. To this
end, we use a pretrained DeeplabV3-ResNet101 model [1]
to compute the semantic segmentation maps for the final
painted canvases for both Huang et al. [3] and the Seman-
tic Guidance (Ours) approach. The detected segmentation
maps for both methods are then compared with the ground
truth foreground masks for the target image.

Results are shown in Fig. 1. We clearly see that our
method learns to paint canvases with semantic segmenta-
tion maps having high resemblance with the ground truth
foreground masks for the target image. In contrast, the can-
vases generated using the baseline [3] show low foreground
saliency. This sometimes results in the pretrained segmen-
tation model [1] even failing to detect the presence of the
foreground object. Note that the semantic guidance pipeline
does not directly train the RL agent to mimic the segmenta-
tion maps of the original image.

We also provide a more quantitative evaluation of the
quality of detected semantic segmentation maps for both
methods in Table 2. The accuracy scores are reported on the
test set images and represent the percentage of foreground
pixels which are correctly detected in the segmentation map

of a given canvas. We observe that our method leads to huge
improvements in the semantic segmentation accuracy and
IoU values for the painted canvases.

The above qualitative and quantitative results conclu-
sively demonstrate that the semantic guidance pipeline
leads to huge gains („ 25%) in preserving the underlying
semantics of a given scene.

A.2. Enhanced Foreground Resemblance

Method Foreground L2 Distance
Huang et al. [3] 8.43

Semantic Guidance (Ours) 7.81

Table 2. Foreground Resemblance Results on CUB-200 Birds.
Our approach leads to a lower average L2 distance between the
foreground regions of the target image and the generated canvas.

B. Implementation of Neural Alignment Model
The neural alignment model is implemented by replacing

the localization net of a standard spatial transformer net-
work [4] with the bounding box prediction network. We
also note that the 3 ˆ 2 affine matrix defined in Eq. 11 of
the main paper, represents the ideal affine mapping opera-
tion from input to output image coordinates. However, the
affine matrix used for practical implementations may vary
based on the conventions of the used deep learning frame-
work. For our implementation (in pytorch), we compute the
affine matrix for the spatial transformer network as follows,
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where px̃b, ỹb, w̃b, h̃bq are the normalized bounding box
coordinates of the foreground object.

C. Note on Over-painting Phenomenon
We note that while the proposed semantic guidance

pipeline results in huge improvements in enhancing fore-
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Figure 1. Analysing Semantic Similarity.(a) Huang et al. [3], (b) Semantic Guidance (Ours), (c) the target image. The bottom row for
each example represents the semantic segmentation maps for the images shown in the top row. We clearly see that the canvases painted
using our method generate semantic segmentation maps which are much closer to the ground truth foreground segmentation masks. We
also note that, for target images with low foreground background contrast, the segmentation maps for baseline canvases (a) fail to even
indicate the presence of the foreground object.

ground object saliency and increasing the granularity of the
painted image, we do observe minor background artifacts
for images with plain backgrounds. This occurs because
as part of the bilevel painting procedure, both foreground
and background brush strokes are working simultaneously
in an action bundle. Thus for images with high contrast
in complexities of foreground and background, the back-
ground strokes are forced to overpaint while the foreground
strokes draw the in-focus object. This overpainting phe-
nomenon was seen to cause minor artifacts in plain im-
age backgrounds as can be seen in (Fig. 3a; row-3) of the
main paper. The above mentioned artifacts can be reduced
by adaptively balancing the number of foreground / back-
ground strokes in an action bundle, based on the WGAN
distances for the foreground and background image regions.
However, the same is out of scope of the current paper and
we thus leave it here as a possible future research directive.
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