
Supplementary Material for DISCO: Dynamic and Invariant Sensitive Channel
Obfuscation for deep neural networks

Abhishek Singh1, Ayush Chopra1, Ethan Garza1, Emily Zhang1, Praneeth Vepakomma1,
Vivek Sharma1,2, Ramesh Raskar1

1 Massachusetts Institute of Technology, 2 Harvard Medical School

Appendices
A. Hyper-parameters and Experimental Setup

All of the experimental setup is implemented in PyTorch
and we will be releasing the codebase for all of different
quantitative and qualitative experiments, with the random
seeds used in all of the experiments.
Network architecture: We describe four distinct networks
in the section 3, client network, filter generating network,
adversary network, task network. We use ResNet-18 [1]
as the base architecture for all of the four networks. For
alignment of the architecture we experiment with the differ-
ent blocks of the ResNet architecture and split the network
such that output of the client network is fed to all three filter
generating network, adversary network, and task network.
The filter generating network has same number of neurons
in the final fully connected layer as number of channels in
the output produced by client network. The sigmoid tem-
perature is 0.03 for the filter generating network. We adapt
the ResNet backbone for adversary network when the pro-
tected attribute is sensitive input since it requires to build a
generative model conditioned on client activations. We use
a transpose convolution based architecture that upsamples
the feature map to a higher dimensionality resulting in final
image.
Pre-processing module described in the section 3.3.a is
composed of a single convolution layer and a spatial de-
coupler that splits the feature-map into d2 spatially disjoint
partitions. For an image size of 112 and target d2 to be 64,
the resulting featuremap size is 14 × 14 that gets rescaled
back to 112× 112 using bilinear interpolation. We keep the
value of the d2 as 64 to make sure that the averaging in the
channel space results in 64 distinct feature maps that can be
fed into the remaining of the architecture, this allows com-
patibility of the pre-processing module with off the shelf
architectures.

Optimizer: We use SGD optimizer with momentum [2] for
all of the networks with a learning rate of 0.01

B. Generalization

The setup described in the main text is as follows for
optimizing the parameters -

min
φ

[
max
θ3

−Lpriv(θ1, φ, θ3) + min
θ

(−ρmax
w

−Lutil(θ1, φ, θ2))
]

where θ1, φ, θ2, θ3 are the parameters of the filter gener-
ating network, client network, and server network respec-
tively. Let θ∗1 , φ

∗, θ∗2 , θ
∗
3 be the solution for the parameters

we obtain by minimizing the expected loss. Let θ̂1, φ̂, θ̂2, θ̂3
refers to the empirical minimizer of the above mentioned
joint optimization. As noted before, we adapt to the setup
described by Hamm [3]. However, a significant difference
lies in the fact that θ1 is not trained to minimize Lpriv as
this is to improve generalization of the φ across a different
set of θ1. The remaining parameters remain analogous to
the min-max filters described in [3] .Following on that, we
describe the joint loss as follows

LJ(θ1, φ, θ2, θ3) = Lutil(θ1, φ, θ2)− ρLpriv(θ1, φ, θ3)

Let D be the original unknown data distribution and S be
a set of samples obtained from the true distribution for cal-
culating empirical loss then the empirical and expected loss
can be bounded as follows, giving a generalization bound.

|ED(LJ(θ∗1 , φ∗, θ∗2 , θ∗3))− ES(LJ(θ̂1, φ̂, θ̂2, θ̂3))| ≤
2 sup
θ1,φ,θ2,θ3

|ED(LJ(θ1, φ, θ2, θ3))− ES(LJ(θ1, φ, θ2, θ3))|

For more details, we refer the reader to the proof of theorem
1 shown in [3]. The equation above gives the bound on
generalization error.

C. Effect of channel pruning on mutual infor-
mation

We now study the effect of applying channel pruning
of activations at the output of the client network with re-
gards to the mutual information between the raw sample
and the pruned activations. Inspired by the theoretical anal-
ysis in [4], we extend and adapt it to our setup of analyzing
the reduction in mutual information between the sensitive
input and client activations upon performing random prun-
ing. We use the superscript notation fk1 (θ

k
1 ;x) to denote the

output of k’th layer of client network. We compare this with
regards to no pruning and random pruning at the k’th layer
of the client network as shown below.
Pre-pruning: The negative of the mutual information be-
tween the raw data and the output of 1’st layer prior to ap-
plying the pruning is given by

−I(x; f11 (θ11;x)) = −H(f11 (θ11;x))−H(f11 (θ11;x)|x)
= −H(f11 (θ1;x))

as−H(f11 (θ1;x)|x) = 0, due to f11 (·) being a deterministic
function. Upon applying the data processing inequality, we
have that the mutual information between the output of the
k’th layer and the raw data satisfies:

I(x; fk1 (θk1 ;x)) ≤ I(x; fk−1
1 (θk1−1;x)) ≤ . . . ≤ I(x; f11 (θ11;x))

where, we have the following relation I(x; fk1 (θk1 ;x)) =
H(fk1 (θk1 ;x)).
Post-pruning: The mutual information after random prun-
ing can be represented as a multiplication of the outputs
at the k’th layer with a Bernoulli random variable P as
I(x; fk1 (x, θk1).P). In addition to the form of data process-
ing inequality used in analysis of pre-pruning; there is an
equivalent form of the classical data processing inequality
given by

−I(x; fk1 (x, θk1).P) ≥ −I(fk1 (x, θk1); fk1 (x, θk1).P)

Upon expanding this upper bound using entropy terms we
get

I(x; fk1 (x, θk1).P) ≤ H(fk1 (θk1 ;x))−H(fk1 (θk1 ;x)|fk1 (θk1 ;x).P)

But H(fk1 (θk1 ;x)) is the mutual information in the case of
pre-pruning as analyzed above. Therefore the decrease in
information about raw data post-pruning is given by the
term H(fk1 (θk1 ;x)|fk1 (θk1 ;x).P). Upon applying the Bayes
rule (for conditional entropy), this term exactly equals:

H(fk1 (θk1 ;x).P|fk1 (θk1 ;x))+H(fk1 (θk1 ;x))−H(fk1 (θk1 ;x).P)

Since the term fk1 (θ
k
1 ;x) is independent of the noise P , the

above can be further rearranged as

H(fk1 (θk1 ;x).P|fk1 (θk1 ;x))+H(fk1 (θk1 ;x))−H(fk1 (θk1 ;x))−H(P)

which simplifies toH(fk1 (θk1 ;x).P|fk1 (θk1 ;x))−H(P). As
we chose H(P) to be a Bernoulli random variable; upon
considering its success probability to be p (lower-case) and
probability of failure to be q = 1 − p, we have -H(P) =
plog(p) + qlog(q). Therefore, upon performing random
pruning the decrease in mutual information amounts to

H(fk1 (θk1 ;x).P|fk1 (θk1 ;x))−H(fk1 (θk1 ;x))+plog(p)+qlog(q)

while the mutual information post-pruning is upper
bounded byH(fk1 (θk1 ;x).P|fk1 (θk1 ;x))+plog(p)+qlog(q).

D. Reconstruction Results
We present more reconstruction results for the qualita-

tive comparison. Our results indicate that supervised de-
coder based attack model performs significantly better than
likelihood maximization attack for DISCO, however, for all
other techniques, likelihood maximization attack provides
much better reconstruction quality. The figure can be found
on the next page.

References
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian

Sun. Deep residual learning for image recognition. CoRR,
abs/1512.03385, 2015.

[2] Ning Qian. On the momentum term in gradient descent learn-
ing algorithms. Neural networks, 12(1):145–151, 1999.

[3] Jihun Hamm. Minimax filter: Learning to preserve pri-
vacy from inference attacks. Journal of Machine Learning
Research, 18(129):1–31, 2017.

[4] Fatemehsadat Mireshghallah, Mohammadkazem Taram,
Prakash Ramrakhyani, Dean M. Tullsen, and Hadi Es-
maeilzadeh. Shredder: Learning noise to protect privacy with
partial DNN inference on the edge. CoRR, abs/1905.11814,
2019.

Figure 1: Qualitative comparison for different techniques
using the supervised decoder attack described in the Sec-
tion 3.1. DISCO (Off) refers to DISCO with pre-processing
module’s toggle turned off. This technique results in a dif-
ferent yet realistic reconstruction for even DISCO compared
to deep image prior results shown in the Figure 3.

