Supplementary Material: Rectification-based Knowledge Retention for
Continual Learning

Pravendra Singh'*,
1Independent Researcher, India

Pratik Mazumder?*,
1T Kanpur, India

Piyush Rai?, Vinay P. Namboodiri??
3University of Bath, United Kingdom

pravendral988@gmail.com, pratikm@cse.iitk.ac.in, piyush@cse.iitk.ac.in, vpn22@bath.ac.uk

1. Task Incremental Learning (Generalized
Zero-Shot Setting)

We use our approach RKR to work for the task incre-
mental generalized zero-shot learning problem setting de-
scribed in [8]. The authors in [8] experimentally show that
CADA-VAE [6] suffers from catastrophic forgetting in the
image/visual features encoder when trained in the task in-
cremental generalized zero-shot learning setting. They pro-
pose LZSL to solve this problem. For a fair comparison
with LZSL, we use the same setting, setup, and base archi-
tecture (CADA-VAE) as used in LZSL [8].

1.1. CADA-VAE

In this section, we provide a brief overview of the
CADA-VAE framework. For complete details, please re-
fer to [6]. In the generalized zero-shot learning setting,
there are S seen classes and U unseen classes, and we
have labeled training examples for the seen classes only.
The test images can be from both the seen and unseen
classes. For each seen and unseen class, we have ac-
cess to their class/attribute embeddings, which are gen-
erally vectors of hand-annotated continuous attributes or
Word2Vec [3] features. Zero-shot learning methods lever-
age the class/attribute embeddings to transfer information
from seen classes to the unseen classes. Similar to most
zero-shot learning methods, CADA-VAE operates on image
features extracted by a pre-trained network (ResNet-101).

The CADA-VAE framework consists of a variational au-
toencoder (VAE) for image/visual features (£, D,) and
a VAE for the class/attribute embeddings (F,, D,), each
having an encoder and decoder (see Fig. 1). The two en-
coders project the image features and class embeddings to
the common latent embedding space, respectively, and the
decoders reconstruct the image features and class embed-
dings from their latent embeddings. Specifically, the image
features encoder (£,) maps the image features to (., and 33,
in the latent embedding space. Similarly, the class embed-
dings encoder (F,) maps the class embeddings to y, and
Y. CADA-VAE learns a common latent embedding space

for both the image/visual features and the class/attribute
embeddings and brings the latent embeddings of the im-
age features and class embeddings closer in the latent em-
bedding space. It utilizes cross-alignment loss (CA) and
distribution-alignment loss (DA) apart from the VAE loss
to achieve this objective. Cross-alignment involves train-
ing the class embeddings decoder to generate correspond-
ing class embedding from the latent features of the im-
ages of that class and vice-versa. Distribution-alignment in-
volves training the encoders of the image features and class
embeddings to minimize the Wasserstein distance between
the Gaussian distributions of their latent embeddings. Af-
ter training the VAEs, CADA-VAE uses the u, and ¥, of
all the seen and unseen class embeddings to sample em-
beddings (using the reparametrization trick) for both the
seen and unseen classes from the learned latent embedding
space. It trains a classifier using these latent embeddings
in order to classify the test images. At test time, the pre-
trained network extracts image features from the test im-
ages. The image/visual features encoder (F,) maps the test
image features to the latent embedding space. The classifier
then predicts the class for the test image latent embeddings.

Task Incremental Generalized Zero-shot Learning:
The authors in [8] apply CADA-VAE to a task incremen-
tal generalized zero-shot learning setting where each task
is a separate dataset and each task contain seen and unseen
classes. After training the VAEs on a task ¢, embeddings
can be sampled from the latent embedding space using the
ut and Xt of all the seen and unseen classes. These la-
tent embeddings are used to train a classifier. The classifier
will be able to predict the classes of the test image embed-
dings of that task produced by the visual features encoder
(E!). However, when the network is trained on a new task
t+1, the image/visual features encoder (/1) weights will
change. As a result, the test image features (input to E/1)
for the test images from a previous task will get mapped to a
different latent space (output of Ef,“) than the one obtained
just after training the network on that task. Since the classi-
fier will classify on the basis of the output of E**1, the pre-
dictions for the test images from the previous tasks will be

ﬁ#x

+ white belly
+ gray wings
+ black tail

_’c

+ white belly
+ gray wings
+ black tail

Figure 2: Tllustration of CADA-framework with our proposed RKR image/visual features encoder (F?

v_rkr)- The framework

consists of a pre-trained network for extracting image features and two variational autoencoders, one for the image/visual
features and the other for the class/attribute embeddings. E_ , _is our proposed RKR image/visual features encoder for task
t (shown with a dashed border), that adapts the network for task incremental learning. Image feature %, extracted by the
pre-trained network from an image, is fed to F,,_,,., which maps it to x{, and ! in the latent space. The attribute encoder E,

maps the attribute/class embedding ¢’ of that image to p!, and !, in the latent space. The network is trained on the standard

VAE loss, cross-alignment loss L¢ 4 and distribution-alignment loss Lp 4.

incorrect. Therefore, the CADA-VAE performance suffers
in the task incremental generalized zero-shot learning set-
ting due to the catastrophic forgetting in the visual features
encoder. The authors in [8] propose LZSL to tackle this
problem by using selective parameter retraining and knowl-
edge distillation to preserve previous task knowledge.
Applying RKR: In order to prevent catastrophic forget-
ting, we apply RKR to the image/visual features encoder
E!, that only contains fully connected layers, to obtain
E!_ .. (Fig. 2). Specifically, we use weight rectifications
and scaling factors for each layer in the image/visual en-
coder to quickly adapt it to any task. We train the full net-
work on the first task (base network). For every new task,
we only learn weight rectifications and scaling factors for
all network layers to adapt them to the new task. In the gen-
eralized zero-shot learning setting, we learn the weight rec-
tifications and the scaling factors based on the seen classes

of the given task and use them during testing for classify-
ing both seen and unseen classes of that task. Therefore,
during testing, the image features encoder will map the test
image features for each task to the same embedding space
as expected by the classifier.

1.2. Datasets

For the task incremental generalized zero-shot learn-
ing problem, we experiment with the Attribute Pascal and
Yahoo (aPY) [1], Animals with Attributes 1 (AWA1) [9],
Caltech-UCSD-Birds 200-2011 (CUB) [7], and SUN At-
tribute dataset (SUN) [5] datasets. Other details regarding
the datasets are provided in Table 1. For a fair compari-
son, we use the same sequence of training datasets given
in [8], which is aPY, AWAI1, CUB, and SUN. However, we
also report the results for three other cases with a different
first dataset. We report the average per-class top-1 accu-

Table 1: Datasets used in the task incremental generalized
zero-shot learning problem.

Dataset Class Embedding Images Classes
Dimensions Seen Unseen
aPY 64 15339 20 12
AWALI 85 30475 40 10
CUB 312 11788 150 50
SUN 102 14340 645 72

racy for the unseen classes (U), seen classes (S), and the
harmonic mean of the two accuracies (H) for each dataset
(H = 2?}_{_?5). Our objective is to achieve high H accu-
racy as it is not skewed towards either the seen or unseen
classes. The results are obtained after the training has been

completed on all the datasets.

1.3. Implementation Details

For our experiments, we extract the image features of
2048 dimensions from the final pooling layer of an Ima-
geNet pre-trained ResNet-101. In the case of image fea-
tures, the encoder and decoder of CADA-VAE have 1560
and 1660 hidden layer nodes, respectively. In the case of
class embeddings, the encoder and decoder have 1450 and
660 hidden layer nodes, respectively. The latent embed-
dings are of size 64. For all the datasets, the model is trained
for 100 epochs with batch size 50 using the Adam optimizer
[2]. CADA-VAE also uses a few hyper-parameters, i.e., 6,
v, B. ¢ is increased from epoch 6 to epoch 22 by a rate of
0.54 per epoch, while + is increased from epoch 21 to 75 by
0.044 per epoch. The S weight of the KL-divergence term
is increased by a rate of 0.0026 per epoch up to epoch 90. A
learning rate of 0.00015 is used for the VAEs, and a learn-
ing rate of 0.001 is used for the classifiers. L1 distance is
used for the reconstruction error. These settings have been
proposed in [6] and were also used in [8]. We report the
average results of five runs for our method.

2. Performance

For task incremental learning, we perform five runs of
every experiment for both the zero-shot and non zero-shot
settings and report the average accuracy. The variations in
our results are very low, e.g., for CIFAR-100 with ResNet18
and LeNet, the 95% confidence interval for the final aver-
age session accuracy is 87.6 & 0.467% and 69.58 £ 0.55%
respectively.

3. Hardware and Software Specifications

We have performed all our experiments in PyTorch ver-
sion 0.4.1 [4] and Python 3.0. For running our experiments,
we have used a GeForce GTX 1080 Ti graphics processing
unit.

References

[1] Ali Farhadi, Ian Endres, Derek Hoiem, and David Forsyth.
Describing objects by their attributes. In 2009 IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
1778-1785. IEEE, 2009.

[2] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In Yoshua Bengio and Yann LeCun,
editors, 3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015.

[3] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado,
and Jeff Dean. Distributed representations of words and
phrases and their compositionality. In Advances in Neural
Information Processing Systems, pages 3111-3119, 2013.

[4] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban
Desmaison, Luca Antiga, and Adam Lerer. Automatic differ-
entiation in pytorch, 2017.

[5] Genevieve Patterson and James Hays. Sun attribute database:
Discovering, annotating, and recognizing scene attributes.
In 2012 IEEE Conference on Computer Vision and Pattern
Recognition, pages 2751-2758. IEEE, 2012.

[6] Edgar Schonfeld, Sayna Ebrahimi, Samarth Sinha, Trevor
Darrell, and Zeynep Akata. Generalized zero-and few-shot
learning via aligned variational autoencoders. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 8247-8255, 2019.

[7] Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona,
and Serge Belongie. The caltech-ucsd birds-200-2011 dataset,
2011.

[8] Kun Wei, Cheng Deng, and Xu Yang. Lifelong zero-shot
learning. In Christian Bessiere, editor, Proceedings of the
Twenty-Ninth International Joint Conference on Artificial In-
telligence, IJCAI-20, pages 551-557. International Joint Con-
ferences on Artificial Intelligence Organization, 7 2020. Main
track.

[9] Yonggin Xian, Christoph H Lampert, Bernt Schiele, and
Zeynep Akata. Zero-shot learning—a comprehensive evalu-
ation of the good, the bad and the ugly. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 41(9):2251-2265,
2018.

