
Semi-Supervised Action Recognition with Temporal Contrastive Learning
(Supplementary Material)

Ankit Singh1* Omprakash Chakraborty2* Ashutosh Varshney2 Rameswar Panda3

Rogerio Feris3 Kate Saenko3,4 Abir Das2
1 IIT Madras, 2 IIT Kharagpur, 3 MIT-IBM Watson AI Lab, 4 Boston University

Project page: https://cvir.github.io/TCL/

This supplementary material contains the following.

• Section 1: Dataset details used in our experiments.

• Section 2: Implementation details of our TCL frame-
work.

• Section 3: Implementation details of the video exten-
sions of the image-based baselines.

• Section 4: Additional classwise improvements over
S4L for 1% labeled data in Jester.

• Section 5: Effect of group contrastive loss on image
datasets.

• Section 6: Additional qualitative examples from dif-
ferent datasets.

1. Dataset-Details

Mini-Something-V2. The Mini-Something-V2 dataset [2]
is a subset of Something-Something V2 dataset [5]. It con-
tains a total of 81663 training videos and 11799 validation
videos. The resolution of each video is set to a height of
240px and has an average duration of 4.03 seconds. There
are a total of 87 action classes related to basic object interac-
tions such as ‘Putting something into something’, ‘Showing
something behind something’, ‘Squeezing something’ and
‘Showing that something is inside something’.
Jester. The jester dataset consists of a total of 148,092
videos spread across 27 classes with an average of 4391
per class samples. The classes belong to a series of hand
gestures such as ‘Sliding Two Fingers Up’, ‘Turning Hand
Clockwise’ and ‘Swiping Down’. Specifically, the train-
ing set contains a total of 118,562 clips and 14,787 clips
are provided for validation. The average duration of the
videos are 3 seconds. The frames are extracted from these
videos with 12 fps and maintain a fixed height of 100px
but with variable width. The dataset is publicly available at
https://20bn.com/datasets/jester/v1.

*The first two authors contributed equally.

Kinetics-400. The Kinetics-400 is a benchmark dataset
containing YouTube videos of diverse human-action
classes. It consists of around 300K videos spread
across 400 classes with each class containing atleast 400
clips. The classes range across a broad spectrum of ac-
tions such as shaking hands, hugging and playing in-
struments. This dataset can be obtained from the link,
https://deepmind.com/research/open-source/kinetics.

Charades-Ego. The Charades-Ego dataset is one of the
largest datasets comprising of both first-person and third-
person views of videos collected across a diverse set of
112 actors. The total 7, 860 samples consist of around
4000 such pairs, each spanning around 31.2 seconds on
average at 24 fps. The videos in this dataset have mul-
tiple activity classes which often overlap, making the
dataset particularly challenging. The training set is divided
into two separate lists, ‘CharadesEgo v1 train only3rd’
and ‘CharadesEgo v1 train only1st’, which contain the
videos corresonding to the third-person and first-person
perespectives respectively. Each file lists the video
ids with their corresponding activity classes. Follow-
ing the standard practice [12], we first trim the multi-
class 3082 videos of ‘CharadesEgo v1 train only3rd’ and
3085 videos of ‘CharadesEgo v1 train only1st’ to ob-
tain 34254 and 33081 single-class clips respectively.
We select the 10% labeled videos class-wise from the
34254 trimmed clips distributed over 157 activity classes.
The mAP metric is evaluated over the full ‘Charade-
sEgo v1 test only3rd’ video set. The dataset is publicly
available at https://github.com/gsig/actor-observer.

2. Implementation Details

In this section, we provide additional implementation de-
tails (refer Section 4.1 of the main paper) of our TCL frame-
work. For the basic convolution operation over the videos,
we use the approach identical to that of Temporal Segment
Network (TSM) [7]. We utilize the 2D CNNs for their
lesser computational complexity over the 3D counterparts
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and implement the bi-directional temporal shift module to
move the feature channels along the temporal dimension to
capture the temporal modeling of the samples efficiently.
All hyperparameters related to TSM module has been taken
from [7]. As shown in [7], this approach achieves the
state-of-art performances while significantly reducing the
computational complexity. We have considered 2D ResNet-
18 model as our primary backbone and have incorporated
the temporal shift module after every residual branch of
the model to avoid the interference with the spatial feature
learning capability. In our experiments, one epoch has been
defined as one pass through all the labeled data. We have
used learning rate of 0.002 during the finetuning stage.

3. Image-based Baseline Details

This section provides implementations details of differ-
ent baselines used in the paper. We have adhered to the
base approach proposed in the original works of the re-
spective baselines for all our experiments. Note that, for
a given video, same set of augmentations have been applied
to all frames of the video so that all frames in a video go
through the same set of transformations and do not loose
the temporal consistency between the them. Also, follow-
ing TSM [7], for the high spatially-sensitive datasets like
Mini-Something-V2 [5] and Jester [8], we refrain from us-
ing the Random Horizontal Flip as it may effect the spatial
semantics of the frames. The initial lr is set to 0.02 with
cosine learning decay in all our baseline experiments unless
stated otherwise. All the baselines models are trained for
350 epochs unless otherwise specified.

Supervised We have used the code made public by the au-
thors in [7] for the supervised baseline. It is trained us-
ing Lsup for 200 epochs and the initial learning rate is kept
same as in TCL. Other hyperparameters are kept same as
the ones used for the respective datasets in [7].

MixMatch We followed the approach in [1] to train our
MixMatch baseline approach. We applied 2 different aug-
mentations to unlabeled videos set (U ) and then computed
the average of the predictions across these augmentations.
We have used cropping and flipping as the two augmenta-
tions in our experiments. The sharpened versions of the av-
erage predictions of K different augmentations are used as
labels for the unlabeled videos. Then, labeled (V ) and unla-
beled videos with their targets and predicted labels are shuf-
fled and concatenated to form another set W which serves
as a source for modified MixUp algorithm defined in [1].
Then for each ith labeled video we compute MixUp(Vi,Wi)
and add the result to a set V ′. It contains the MixUp of
labeled videos with W . Similarly for each jth unlabeled
video, we compute MixUp(Ui,Wi+|V |) and add the result
to another set U ′. It contains the MixUp of unlabeled videos
with rest of W . A cross-entropy loss between labels and

model predictions from V ′ and MSE loss between the pre-
dictions and guessed labels from U ′ are used for training.
The temperature is set to 0.5 and both µ and γ are set to 1.

S4L: S4L [11] is a self-supervised semi-supervised baseline
used in our work. The self-supervision is done by rotating
the input videos. Videos are rotated by {0, 90, 180, 270}
degrees and the model is trained to predict these rotations
of the videos. The corresponding rotation loss [11] is used
for both labeled and unlabeled videos. The µ and γ are set
to 5 in this baseline experiment. The S4L model is trained
using rotation loss apart from the Lsup for labeled videos.
The initial learning rate is set to 0.1.

Pseudo-Label Pseudo-label [6] leverages the idea that in
absence of huge amount of labeled data, artificial labels or
pseudo-labels for unlabeled data should be obtained using
the model itself. Following this basic intuition, we first train
our model using Lsup for 50 epochs to get a reasonably
trained model. The next 300 epochs are run using both
labeled and unlabeled videos. Consistency is ensured be-
tween the pseudo-labels of the unlabeled video with the log-
its predicted for them by the model. The class for which an
unlabeled video gets the highest activation from the model
is taken as the pseudo-label of it. Only videos which have
highest activation greater than 0.95 are assigned pseudo-
labels. Both µ and γ are set to 3 in this set of experiments.

MeanTeacher : The model is trained using the philosophy
described in [10]. In this scenario, we have two models,
one is the student network and the other is the teacher net-
work. The teacher network has the same backbone archi-
tecture as the student. The weights of the teacher network
are exponential moving average weights of the student net-
work. Consistency is ensured between the logits predicted
by the teacher and the student for the unlabeled videos. The
labeled data, in addition, is trained using Lsup. Both µ and
γ are set to 1 in this set of experiments. γ is increased from
0 to 1 using sigmoid function over 50 epochs as in [10].

FixMatch. For extending the FixMatch baseline to video
domain, we primarily follow the same augmentation and
consistency regularization policies laid out in [9]. The
videos are passed through two different pathways. In the
first pathway, the video frames are weakly augmented and
used to obtain the pseudo-labels. In the second pathway, the
strongly augmented versions of the same video frames are
trained for their representations to be consistent with the
corresponding pseudo-labels. Specifically, in the case of
weak augmentations, we use Random Horizontal Flip fol-
lowed by Random Vertical and Horizontal shifts. For the
strong augmentations we use the RandAugment [4] augmen-
tation policy followed by CutOut augmentation. The exper-
iments are carried out for 350 epochs with a batch size of 8
and considering the µ and γ values as 3 and 9 respectively.



Figure 1: Change in classwise top-1 accuracy of TCL over S4L
on Jester. Blue bars show the change in accuracy on 1% labeled
scenario of Jester dataset. The red line depicts the number of la-
beled videos per class in a sorted manner. Compared to S4L, TCL
improves the performance of most classes including those with
less labeled data. (Best viewed in color.)

4. Classwise Improvements
In the main paper, we have presented the change in top-

1 accuracy per class of TCL over FixMatch on 5% Mini-
Something V2. Here, we have included the change in top-1
accuracy per class of TCL over S4L (next best) on Jester
dataset using only 1% labeled data in Figure 1. We can
observe in Figure 1 that only 2 classes in Jester have less
improvement over S4L for this 1% labeled data scenario.

5. Group Contrastive Loss on Image Dataset
We analyze the effect of group contrastive loss on CI-

FAR10 (using SimCLR [3] with WideResNet-28-2 and 4 la-
beled samples per class) and observe that it improves perfor-
mance by 3.15% (84.11% vs 87.26%), showing the effec-
tiveness of group contrastive loss in semi-supervised classi-
fication on image datasets too besides the video datasets.

6. Qualitative Examples
In the Main paper, we provided qualitative examples

from Jester and kinetics-400 dataset. Here we have included
some more samples from all four datasets to show the su-
periority of our methods over the competing baseline meth-
ods. Figure 2, 3, 4 and 5 contain the example frames and
their predictions for Mini-Something V2, Jester, Kinetics-
400 and Charades-ego respectively.
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Supervised: Poking something so it
slightly moves 
FixMatch: Pretending to pick something
up  
TCL:  pretending to pick something up

Supervised: Stuffing something into
something 
FixMatch: Stuffing something into
something  
TCL:  Taking something from
somewhere

Supervised: Dropping something next
to something 
FixMatch: Putting something on a
surface 
TCL:  Dropping something in front of
soemthing

Supervised: Poking something
so it slightly moves 
FixMatch: Uncovering
something  
TCL: Putting something on a
surface

Supervised: Trying out failing to attach
something to something because it
doesn't stick 
FixMatch: Poking something so that it
falls over  
TCL:  Spinning something that quickly
stops

Supervised: Moving something and
something closer to each other 
FixMatch: Pretending to put something
behind something  
TCL:  Holding something next to
something

Supervised: Uncovering
something 
FixMatch: Pushing something
from left to right 
TCL: Pushing something so
that it slightly moves

Supervised: Poking something so that
it falls over 
FixMatch: Throwing something 
TCL:  Spinning something that quickly
stops spinning

Supervised: Moving something and
something so they pass each other 
FixMatch: Putting something onto
something else that cannot support it so
it falls down  
TCL: Folding something

Supervised: Dropping something in
front of something 
FixMatch: Dropping something into
something  
TCL:  Something falling like a feather or
paper

Figure 2: Qualitative examples comparing TCL with supervised baseline and FixMatch [9] on Mini-Something V2 trained using
5% labeled data with ResNet-18. Both rows provide top-1 predictions using supervised baseline, FixMatch and proposed TCL approach
respectively from top to bottom. As observed, the supervised baseline trained using only the labeled data predicts wrong actions. While
the competing methods fail to classify the correct actions in most cases TCL is able to correctly recognize different actions in this dataset.
The predictions marked in green match the ground truth labels, whereas the red marked predictions are wrong. (Best viewed in color.)

Supervised:Sliding Two Fingers Up
S4L: Shaking Hand 
TCL:  Pushing Hand Away

Supervised: Sliding Two Fingers Right
S4L: Sliding Two Fingers Down 
TCL:  Swiping Right

Supervised: Drumming Fingers
S4L: Rolling Hand Forwardz 
TCL:  Thumb Down

Supervised: Pulling Hand Away
S4L: Pulling Hand In 
TCL:  Swiping Left

Supervised: Sliding Two Fingers Left
S4L: Rolling Hand Forward 
TCL:  Rolling Hand Backward

Supervised: Doing other things
S4L: Swiping Left 
TCL:  Sliding Two Fingers Left

Supervised: Swiping Up
S4L: Turning Hand Counterclockwise 
TCL: Turning Hand Counterclockwise

Supervised: Swiping Left
S4L: Pushing Two Fingers Away 
TCL:  Sliding Two Fingers Right

Supervised:  Zooming In With Two
Fingers
S4L: No gesture 
TCL:  Doing other things

Supervised: Turning Hand Clockwise
S4L: Sliding Two Fingers Right 
TCL:  Drumming Fingers

Figure 3: Qualitative examples comparing TCL with supervised baseline and S4L [11] on Jester dataset trained using 1% labeled
data with ResNet-18. Both rows provide top-1 predictions using supervised baseline, S4L and TCL respectively from top to bottom. As
observed, the supervised baseline trained using only the labeled data predicts wrong actions. While the competing methods fail to classify
the correct actions in most cases, our proposed approach, TCL is able to correctly recognize different hand gestures in this dataset. The
predictions marked in green match the ground truth labels, whereas the red marked predictions are wrong. (Best viewed in color.)
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Supervised: abseiling 
FixMatch: juggling balls 
TCL:  ice climbing

Supervised: playing cards 
FixMatch: washing hands  
TCL:  cleaning toilet

Supervised: side kick 
FixMatch: side kick  
TCL:  yoga

Supervised: brushing hair 
FixMatch: crawling baby 
TCL:  opening present

Supervised: cooking egg 
FixMatch: cleaning toilet  
TCL:  table setting

Supervised: playing drums 
FixMatch: feeding fish 
TCL:  pushing wheelchair

Supervised: playing monopoly 
FixMatch: drawing  
TCL:  writing

Supervised: busking 
FixMatch: skiing (not slalom or
crosscountry) 
TCL:  riding elehants

Supervised: squat 
FixMatch: welding 
TCL:  welding

Supervised: zumba 
FixMatch: zumba  
TCL:  aerobics

Figure 4: Qualitative examples comparing TCL with supervised baseline and FixMatch [9] on Kinetics-400 trained using 5%
labeled data with ResNet-18. Both rows provide top-1 predictions using supervised baseline, FixMatch and TCL respectively from top
to bottom. As observed, the supervised baseline trained using only the labeled data predicts wrong actions. While the competing methods
fail to classify the correct actions in most cases our proposed approach, TCL is able to correctly recognize different actions in this dataset.
The predictions marked in green match the ground truth labels, whereas the red marked predictions are wrong. (Best viewed in color.)

Figure 5: Qualitative examples comparing TCL with supervised baseline and FixMatch [9] on Charades-Ego. As each of the video
samples have multiple actions, we show random frames from different videos of the dataset and compare the Top-K predictions for those
frames. Here, ‘K’ denotes the number of ground-truth classes associated with the respective samples. While the supervised and competing
methods fail to classify all the correct actions in most cases, TCL is able to correctly recognize most of the relevant actions in these videos.
The predictions marked in green match ground truth labels, whereas red marked predictions are wrong. (Best viewed in color.)


