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Figure 1. Artist-created IBL used for baseline measurement.

1. Video of mobile application
A video providing an overview of our method and

a demonstration of our mobile application in the real
world using iPhone XS is available at https://docs-
assets.developer.apple.com/ml-research/
papers/hdr-environment-map.mp4

2. Artist-created environment map
In Figure 1 we show the artist-created environment map

used as a baseline in our benchmarking. The artist designed
it to satisfy aesthetic and lighting requirements. For light-
ing, the intensities are selected to make sure the objects
were well exposed and that middle gray is retained. The
aesthetic brief was to have a “studio lighting” feel with a
broad area light from behind the camera and from above.

3. Network details
In Table 1 we provide the building blocks of the model

architectures used in our method. Spectral Normalization
[4] is used in all the convolutional layers.

Our proposed model, EnvMapNet, consists of an en-
coder and decoder as shown in paper Figure 2. The en-
coder is composed of five sets of EnvMapNet-conv-block
and EnvMapNet-downsample-block, with uk=[64, 128, 128,
128, 256, 256, 512] for each consecutive block respectively.
The resulting latent vector is convolved with a 1×1 kernel

EnvMapNet-conv-block
short-cut,x=input
Repeat 5 times:

x=BatchNormalization(x)
x=LeakyReLu(slope=0.2)(x)
x=Convolution(kernel=(3,3),filters=16)(x)
x=Concatenate(x,short-cut)
short-cut=x

output=x
EnvMapNet-downsample-block
x=input
x=Convolution(kernel=(3,3),filters=dk)(x)
x=AveragePool2D(x)
output=x
EnvMapNet-upsample-block
x=input
x=NearestNeighbourUpsample2x(x)
x=Convolution(kernel=(3,3),filters=uk)(x)
output=x
Discriminator-residual-block
sc=AveragePool2D(input)
sc=Convolution(kernel=(3,3),filters=ak)(sc)
x=input
Repeat 2 times:

x=BatchNormalization(x)
x=LeakyReLu(slope=0.2)(x)
x=Convolution(kernel=(3,3),filters=ak)(x)

output=Add(x,sc)
Table 1. Building blocks used in EnvMapNet and discriminator.

to output 64 filters. The decoder mirrors the encoder by
using EnvMapNet-conv-block and EnvMapNet-upsample-
block. The final output is produced by a 3×3 convolution to
produce 3 channels for RGB, followed by a tanh activation.
We use skip connections between same sized layers of the
encoder and decoder.

The discriminator is composed of residual blocks with
ak=[64, 128, 256, 256, 256, 256, 256] for consecutive
blocks respectively. The outputs from the discriminator are
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Figure 2. Intuitive understanding of ProjectionLoss and its relation
to shadow casting. The loss is defined in Section 3.3.

Figure 3. Example masks used for ProjectionLoss.

the binary classification of real or fake, and the classifica-
tion into the K-means cluster ID. Each is obtained by convo-
lution layer with the corresponding number of output chan-
nels and global average pooling.

4. ProjectionLoss and user study details

In this section we expand on the background for our pro-
posed ProjectionLoss, its relation to shadow casting, and the
details of the user study and experiments discussed in paper
Section 3.3.

4.1. Relation to shadows

In Figure 2 we provide an illustration to explain our mo-
tivation for ProjectionLoss. Consider an object (blue ball),
lit by an environment map, and casting a shadow on the pla-
nar surface below. Accurate generation of shadows requires
for every point on the plane (red cross) the computation of
the integral over the part of the env map that is visible from
that point (shaded orange), i.e. not occluded by the object
(blue ball). To this end, the environment map is element-
wise multiplied with a visibility mask. Our precomputed
randomized masks (Figure 3) used in projection loss are ex-
amples for such visibility masks for different points on the
plane and different object shapes. As a result, Projection-
Loss encourages our predicted env maps to lead to shadows
similar to ground truth.

4.2. User study

To further understand the value of ProjectionLoss for
lighting estimation, and to compare to other measures, such
as SSIM [8] and Mean Squared Error (MSE), we performed
the following experiments. For each dataset environment
map, we render an image of a scene with multiple geomet-
ric objects as shown in Figure 4.

First we establish a baseline metric to measure similar-
ity between rendered images. We propose using the SSIM
score, which is a metric often used to measure human per-
ception and image similarity, to quantify the similarity of
our rendered images. To validate this for our application, we
perform a user study asking participants to choose from four
provided options which rendered image looks most simi-
lar to a reference rendered image. The four options were
randomly selected such that two of them were in the top-
10 as retrieved by SSIM, and the other two from outside
the top-10. Based on the results of 5 study participants,
each providing their selection for 380 reference images, we
found that on average human participants selected one of
the top-10 SSIM images 95% of the time. Hence retrieval
of similar environment maps based on SSIM between ren-
dered images is a baseline method to find environment maps
that produce similar lighting on the objects.

We then evaluate the correlation between SSIM on ren-
dered images with ProjectionLoss and MSE calculated on
the corresponding (equirectangular) environment maps. We
can observe that the retrieval of similar environment maps
by ProjectionLoss is better matched with retrieval based on
SSIM compared to using MSE, see Figure 4. Quantitatively,
we found the intersection of top-5 retrievals by SSIM (on
the rendered images) and those using ProjectionLoss (on
the environment map) to be 1.6±0.7, while it was 0.6±0.5
using MSE (on the environment map).

Based on the above we believe that our proposed Projec-
tionLoss is a good loss to train the network for estimating
lighting such that the end result for rendering is accurate
with respect to ground truth. Secondly, we show that MSE
on the environment map is insufficient for training accurate
light estimation, and its use as a metric of comparison or
benchmarking, as done in previous works, would not corre-
late well with the final application.

5. Comparisons with recent methods

In this section we expand on the qualitative results from
paper Section 5.1 and provide comparisons to the very re-
cent work of Srinivasan et al. [6], that trained and evalu-
ated on synthetic LDR images from InteriorNet [3]. The
authors also provided results from their re-implementation
of Deep Light [2] and Neural Illumination [5]. We used the
images and results provided as part of their paper and show
the comparison to our results in Figure 5. We note that the
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Metric Reference Image Top-5 Retrievals

(a) SSIM

(b) ProjectionLoss

(c) MSE

(a) SSIM

(b) ProjectionLoss

(c) MSE

Figure 4. Retrieval for two reference images based on (a) SSIM on rendered images, (b) ProjectionLoss on equirectangular images, and (c)
MSE on equirectangular images. A user study on 380 reference images showed 95% agreement with SSIM retrieval. Average intersection
of participants’ selection of most similar rendered images with top-5 retrieval from ProjectionLoss was 1.6, and from MSE was 0.6.

input to our algorithm was only the incomplete panorama
shown in Figure 5(a), while stereo images were used for
Srinivasan et al. [6] (c), and the 32×32 sphere image output
from LeGendre et al. [2] was converted to an equirectangu-
lar projection by the authors (d). Furthermore, compared
methods were (re)trained by Srinivasan et al. on the same
synthetic dataset (InteriorNet [3]), while our results are us-
ing the same network as before. It was trained on 2, 810 im-
ages from public datasets of real-world images - Laval In-
door HDR dataset [1] and PanoContext LDR panoramas [7]
- as discussed in paper Section 3.1.

Since the network used by Srinivasan et al. was trained
on stereo input and LDR ground truth (with reverse
gamma), we only make qualitative comparisons for LDR
completion/generation of environment maps. We noticed
that the predictions made by the algorithm from Srini-
vasan et al. resembles the (unseen) ground truth textures
very closely. For example, the window, curtains and wall
boundaries in the first two images shown in Figure 5(c)
closely match the corresponding regions in Figure 5(b).
This is surprising given that the input panorama does not
contain this information.

Note that our model was trained with images which are
aligned with vertical axis being gravity, that is, the hori-
zon is aligned to the horizontal image axis. This is easily
achieved in mobile AR using device pose and orientation,
and it also avoids ambiguity when training a network. The
images provided as input (a) have different rotations result-
ing in some of the artifacts observed. Additionally we ob-
serve that the input panoramas are not just masked subset
of pixels from the ground truth. The artifacts in the input,
such as the blocks and aliasing seen on the left side of the
first input, could potentially be from reprojection done by
Srinivasan et al., which is carried forward by our results as
part of ‘known input’. We manually corrected the above by
‘straightening’ the panoramas (g), and using the input mask
to create Corrected Input (h), and show results from our
method using this corrected input in row (i). Qualitatively
we can observe that our method can produce plausible and
perceptually pleasing reflections in these new scenes, even
though our model was not trained on the same dataset.
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(a) Input

(b) Ground Truth

(c) Lighthouse [6]

(d) Deep Light[2]

(e) Neural Illumination[5]

(f) EnvMapNet (Ours on (a))

(g) Rotated Ground Truth

(h) Corrected Input

(i) EnvMapNet (Ours on (h))

Figure 5. Qualitative comparisons with the results from Srinivasan et al. [6] and their re-implementation of [2] and [5]. See Appendix 5.

6. Results and comparison

In this section we provide several images to demonstrate
the effectiveness of our method, for rendering virtual ob-
jects in mobile AR applications, and expand on the images
and results discussed in paper Section 5.2.

In Figures 6 and 7 we show predicted environment maps
from Gardner et al. [1] and our method over a variety of
scenes and lighting conditions. We further show their use
for rendering both reflective (teapot) and diffuse (dragon)

objects1 with shadows. Each result is shown over a pair of
rows containing the input crop, rendered images, and corre-
sponding environment maps with angular error below each.
To enable fair and future comparison, we crop the test en-
vironment maps in the center for 90 degree FoV. We rec-
tify and provide the Input Crop to [1], and project them
to a equirectangular map for our method. We obtain the
predicted equirectangular maps from each image, extract

1http://graphics.stanford.edu/data/3Dscanrep/
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the parametric lights for calculation of AngularError as de-
scribed in paper Section 4, and proceed to use for rendering.

We use Tungsten2 an open source path tracer, to generate
renderings of an aluminum metal finish teapot and a lamber-
tian material on the dragon objects. Only for the purpose of
rendering, we perform the following post-processing oper-
ations on each predicted equirectangular map. Since each
method provides the result in an arbitrary intensity range,
we scale the pixel intensities for each predicted result such
that the average intensity in the region provided as input is
equal to that of the ground truth HDR. We further overlay
the pixels from the ground truth corresponding to the in-
put FoV, to simulate the AR video backdrop and common
background for each rendering. We provide this equirect-
angular map as the input for Tungsten, position the virtual
camera to match the input crop provided, and obtain the
rendered images shown in Figures 6 and 7 for EnvMap-
Net (Ours), Ground Truth and Gardner et al. [1]. We
stress that this post-processing was only done for the offline
rendering pipeline and not for other comparisons.

As previously detailed, this simulates that a virtual ob-
ject is placed at the center of a probe which is illuminated
using the environment map. As shown in the images, our
results generate perceptually pleasing and accurate lighting
for the virtual object compared to those from [1], for both
material finishes. Though our method cannot (and should
not) create the unseen ground truth scene exactly, the level
of detail generated is clearly plausible and provides a better
visual coherence compared to those from [1]. This aspect
regarding image resolution and quality of the details is cap-
tured by the FID metric as detailed in the main paper. The
renderings of the diffuse dragon object on a plane highlight
the difference in accuracy of estimated light direction, as
captured by our AngularError metric listed below each re-
sult. The images show estimated environment maps with a
wide range of errors from both methods, and as can be ob-
served, overall our estimates produce shadows which better
match those from the ground truth environment map.
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Input Crop EnvMapNet (Ours) Ground Truth Gardner et al. [1]

24.65 AngularError 79.96

8.3 AngularError 68.04

1.04 AngularError 57.93

52.41 AngularError 50.99

35.33 AngularError 57.67
Figure 6. Results with variety of angular errors. Each result is shown over a row containing the input crop, rendered images with reflective
teapot and diffuse dragon, with corresponding environment maps below each. As discussed in paper Section 5 our method is qualitatively
and quantitatively able to produce visually coherent environment maps for lighting, shadows and reflection.
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Input Crop EnvMapNet (Ours) Ground Truth Gardner et al. [1]

37.53 AngularError 48.42

40.18 AngularError 53.26

41.54 AngularError 111.82

41.59 AngularError 90.54

34.5 AngularError 56.83
Figure 7. More results with variety of angular errors. Each result is shown over a row containing the input crop, rendered images with
reflective teapot and diffuse dragon, with corresponding environment maps below each. See Figure 6 and paper Section 5.
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