
Supplementary Material for

SRWarp: Generalized Image Super-Resolution under Arbitrary Transformation

Sanghyun Son Kyoung Mu Lee

ASRI, Department of ECE, Seoul National University, Seoul, Korea

{thstkdgus35, kyoungmu}@snu.ac.kr

S1. Details about the DIV2KW Dataset

We synthesize the proposed DIV2KW dataset with var-

ious random projective transformations. Warping parame-

ters are determined by combining sheering, rotation, scal-

ing, and projection matrices, denoted as H , R, S, and P ,

respectively. We construct M−1

i first and inverse the matrix

to implement the actual transform Mi to construct feasible

transformations. Detailed specifications of the transforma-

tions are described as follows:

M−1

i = HRSP,

H =





1 hx 0
hy 1 0
0 0 1



 ,

R =





cos θ sin θ 0
− sin θ cos θ 0

0 0 1



 ,

S =





sx 0 0
0 sy 0
0 0 1



 ,

P =





1 0 tx
0 1 ty
px py 1



 ,

(S1)

where the variables are randomly sampled from uniform

(U) or normal (N) distributions. Table S1 shows param-

eters of the random distributions we use. We note that the

projection matrix P varies depending on the size of the HR

sample IHR to normalize image shapes after warping.

For training, we randomly crop N many 384 × 384
patches IHR from 800 images in the DIV2K [1] dataset

and apply arbitrary M−1

i to get corresponding LR samples

ILR. We leverage a widely-used bicubic interpolation for

the synthesis. A cropped version of the LR image ILR-crop

has a maximum size of 96 × 96, which is randomly ac-

quired by ignoring void pixels. For evaluation, we follow

the similar pipeline but center-crop one 384 × 384 patch

from each DIV2K validation image, i.e., from ‘0801.png’

to ‘0900.png.’ 100 transformation matrices Mi is assigned

Variable(s) Sampling distribution Note

hx, hy U (−0.25, 0.25) Random sheering

θ N
(

0, 15◦2
)

Random rotation

sx, sy U (0.35, 0.5) Random scaling

tx U (−0.75w, 0.125w)

Random projection
tx U (−0.75h, 0.125h)
px U (−0.6w, 0.6w)
py U (−0.6h, 0.6h)

Table S1: Random variable specifications for the trans-

formation matrix. h × w denotes the resolution of an HR

patch or image.

× 𝑀𝑖Train

(a) Training patches and transforms

⋯
𝑀1Valid 𝑀2Valid 𝑀3Valid 𝑀4Valid 𝑀5Valid ⋯

(b) Validation patches and transforms

𝑀1Test 𝑀2Test 𝑀3Test
⋯⋯𝑀4Test

(c) Test images and transforms

Figure S1: Illustration of the DIV2KW data splits. We

use the same images for validation and test, but their sizes

and corresponding matrices are different.

1

to each image, and the cropped region ILR-crop is also fixed

to ensure reproducibility.

To fairly compare our SRWarp model against the con-

ventional warping method, we use full-size images IHR as

test inputs. The smallest HR image in the DIV2K validation

dataset has a resolution of 816×2040, and the largest one is

2040 × 2040. Since the transformation matrix Mi depends

on the image resolution, each of the 100 test examples has

assigned fixed warping parameters similar to the validation

case. We also note that the test transformations are totally

different from training and evaluation due to the size differ-

ence. Figure S1 demonstrates a visual comparison between

the training, validation, and test splits.

S2. Details about the AWL

We concretely describe how the adaptive sampling coor-

dinate in Section 3.2 of our main manuscript is calculated.

A unit circle x′2 + y′2 = 1 on the target domain is mapped

to a general ellipse E on the source coordinate by the affine

transform J =
(

u
T

v
T
)

. For simplicity, we will formu-

late the shape E as a rotated version of an axis-aligned el-

lipse, which can be described as follows:

(x cosω + y sinω)
2

A2
+

(y cosω − x sinω)
2

B2
= 1, (S2)

where A and B are lengths of principal axes, and ω denotes

the rotated angle, respectively, as shown in Figure S2. By

assuming that u = (ux, uy) and v = (vx, vy), we get the

following equation:

(

x′

y′

)

=
1

D

(

vy −vx
−uy ux

)(

x

y

)

, (S3)

where D = det J = uxvy − vxuy . By substituting x′ and

y′ in the equation of the unit circle with (S3), we get the

following:

(vyx− vxy)
2
+ (uxy − uyx)

2
= D2. (S4)

Since (S2) and (S4) are equivalent, the following three iden-

tites can be derived by developing the equations:

cos2 ω

A2
+

sin2 ω

B2
=

u2
y + v2y

D2
,

sin2 ω

A2
+

cos2 ω

B2
=

u2
x + v2x
D2

,

2 cosω sinω

A2
−

2 cosω sinω

B2
= −

2uxuy + 2vxvy
D2

,

(S5)

𝐞𝑦′

𝑥, 𝑦 = 𝑓𝑀−1 𝑥′, 𝑦′ 𝐤 𝑥′, 𝑦′𝐞𝑥′𝑜𝑦′ 𝐞𝑦′𝐴𝜔𝐵
𝑜𝑥′ , 𝑜𝑦′ = 0.75, 1.89𝑜𝑥′𝐞𝑥′

𝐸

Figure S2: Detailed illustration of the adaptive resam-

pling coordinate. We find the green ellipse E for each

position (x′, y′) on the target coordinate. Best viewed with

Figure 3 in our main manuscript.
(

o′x, o
′
y

)

denotes a rela-

tive offset vector, i.e., o′
11, of the example point in red with

respect to the reference (x, y) in navy on the adaptive grid.

where right-hand-side terms are constant. Using trigono-

metric identities, we can reduce (S5) as follows:

1

A2
+

1

B2
=

‖J‖2F
D2

,

cos 2ω

(

1

A2
−

1

B2

)

=
u2
y + v2y − u2

x − v2x

D2
,

sin 2ω

(

1

A2
−

1

B2

)

= −
2uxuy + 2vxvy

D2
,

(S6)

where ‖J‖2F = u2
x+v2x+u2

y+v2y . Using (S6), it is possible

to represent three unknowns A, B, and ω with respect to J

in a straighforward fashion as follows:

ω =
1

2
arctan

2uxuy + 2vxvy
u2
x + v2x − u2

y − v2y
,

A =

√

D2 cos 2ω

cos2 ω ‖J‖2F − u2
x − v2x

,

B =

√

D2 cos 2ω

cos2 ω ‖J‖2F − u2
y − v2y

.

(S7)

Then, the basis vectors e
′
x and e

′
y of the adaptive grid can

be calculated as follows:

e
′

x = (A cosω,A sinω) ,

e
′

y = (−B sinω,B cosω) .
(S8)

Figure S2 shows a visualization of the ellipse E with its

principal axes on the source domain.

A bold window in Figure S2 visualizes a k × k ker-

nel support where the resampling weights k (x′, y′) is eval-

uated on. As described in (2) of our main manuscript,

2

5.6183 1.9735 0−0.1797 3.6804 00.0029 0.0018 1
𝑀

SRWarp

𝐈LR
𝐈SR

𝑝1 𝑝2𝑝3 𝑝4𝑝5 𝑝6
𝑝1′ 𝑝2′

𝑝3′ 𝑝4′

𝑝5′
𝑝6′

(a) Correspondences between points in ILR and ISR

-2 -1 0 1 2
i

-2

-1

0

1

2

j

(b) Resampling coordinate at p1

-2 -1 0 1 2
i

-2

-1

0

1

2

j

(c) Resampling coordinate at p2

-2 -1 0 1 2
i

-2

-1

0

1

2

j

(d) Resampling coordinate at p3

-2 -1 0 1 2
i

-2

-1

0

1

2

j

(e) Resampling coordinate at p4

-2 -1 0 1 2
i

-2

-1

0

1

2

j

(f) Resampling coordinate at p5

-2 -1 0 1 2
i

-2

-1

0

1

2

j

(g) Resampling coordinate at p6

Figure S3: Visualization of the spatially-varying adaptive grid. (a) We note that the correspondence is calculated as

Mpi = p′i. (b−g) We display locally-varying sampling grids for the proposed AWL. The ×4 feature F×4 is used as a source

domain for visualization. A bold 3 × 3 grid shows a resampling kernel k (x′, y′) on the source domain. We visualize the

relative offsets in red with respect to the adaptive coordinate. Our kernel estimator K takes the 3 × 3 offset vectors and

predicts appropriate resampling weights. Then, the output value W×4 (x
′, y′) is calculated by combining 3× 3 points in red

on the source domain with the corresponding kernel. The sampling grid tends to be shrunk if the feature is locally enlarged

and vice versa.

3

we first locate k × k points in the window, i.e., P =
{pij = (⌊x⌉+ i, ⌊y⌉+ j) |a ≤ i, j ≤ b}. For the case in

Figure S2, we note that a = −1 and b = 1 and therefore

|P| = 9. Then, we calculate relative offsets of each point

with respect to the reference (x, y), i.e., oij = pij − (x, y),
on a regular grid. Finally, we find k × k many vectors o′

ij ,

which is a representation of the offsets oij using the orthog-

onal basis
{

e
′
x, e

′
y

}

as follows:

o
′
T

ij =

(

A−1 0
0 B−1

)(

cosω sinω
− sinω cosω

)

o
T

ij . (S9)

Using the calculated offset vector o
′
T

ij , we rescale the

original offsets and evaluate the kernel function as de-

scribed in our main manuscript. We note that in traditional

bicubic interpolation method, resampling basis is fixed to

{(1, 0) , (0, 1)} across all output positions (x′, y′). For the

Adaptive configuration in Table 2 of our main manuscript,

we use the conventional cubic spline to calculate the weight

for each offset vector o
′
T

ij . In the proposed AWL, we con-

catenate k×k many vectors and fed them to a learnable net-

work K. By doing so, a k × k resampling kernel k (x′, y′)
can be calculated at once. We provide more detailed visu-

alization of AWL in Section S3 and implementation of the

kernel estimation module K in Section S4.

S3. Visualizing Spatially-Varying Property

We analyze how the proposed SRWarp operates in a

spatially-varying manner. Figure S3 shows our adaptive

resampling grids for different local regions. Specifically,

when a local region is shrunk to a certain direction, the

green ellipse is stretched to the particular axis. Then, points

in such direction are pulled to the origin when calculating

the kernel function and contribute more, i.e., have larger

weights. The same thing happens oppositely in the case of

locally enlarging distortions. Our SRWarp can reconstruct

high-quality images without severe artifacts and aliasing by

considering the spatially-varying coordinate system in the

resampling process. Combined with the learnable kernel es-

timator K, the adaptive grid can improve our SRWarp model

without requiring any additional parameters.

In Figure S4, we demonstrate how the multiscale blend-

ing coefficients vary depending on different contents and

local distortions. As shown in Figure S4c and Figure S4d,

×2 and ×4 features play an important role around edges.

On the other hand, the activation of the ×1 feature in Fig-

ure S4b is widely distributed across the scene for low-

frequency structures. We note that our multiscale blending

module places a high priority on fine-grained textures and

details regardless of the feature scale s, showing that single-

scale information may not be enough for the warping task.

We also validate the effectiveness of the scale feature S in

(7) of our main manuscript by ignoring C from the blend-

ing module. Since the ×4 feature plays a critical role in

upsampling a given image, it is equally weighted across the

target domain, as shown in Figure S4g. In contrast, relative

contributions of ×1 and ×2 features show spatially-varying

behavior, demonstrating the importance of considering lo-

cal distortion. Specifically, the ×1 feature becomes less

weighted with larger distortion (bottom right of Figure S4e),

while it can provide meaningful information to our SRWarp

model if the deformation is not significant (top left of Fig-

ure S4e).

S4. Detailed Model Architectures

Multiscale feature extractor. Figure S5 demonstrates the

modified MDSR [9] and MRDB backbone architectures we

introduce for efficient multiscale respresentation. Since the

proposed SRWarp model is designed to handle the SR task

of arbitrary scales and shapes, we remove the scale-specific

branch in front of the original MDSR structure. We also

replace ×2, ×3, and ×4 upscaling modules to ×1, ×2,

and ×4 feature extractors. Following the baseline model by

Lim et al. [9], we adopt 16 ResBlocks with 64 channels each

for the main branch. Our MRDB model is a multiscale ver-

sion of the state-of-the-art RRDB [14] network. We change

the last upscaling layer to the proposed scale-specific fea-

ture extractors, similar to the modified MDSR model.

SRWarp architecture. Figure 4 in our main manuscript

illustrates the overall pipeline of the proposed SRWarp

method. We construct the main modules with residual

blocks [8, 9] and skip connections [7] for stable and efficient

training. Figure S6, Figure S7, and Figure S8 show how the

actual implementations of our kernel estimator, multiscale

blending, and reconstruction modules are, respectively.

Architectures for the ablation study. Figure S9 de-

scribes detailed model structures for Table 1 in the main

manuscript. We note that ×1 feature F×1 is fed to the AWL

since the module replaces conventional upsampling layers

in SR networks.

S5. Detailed Training Configurations

For stable convergence, we pre-train the SRWarp net-

work on the fractional-scale DIV2K dataset with a mini-

batch size of N = 16. The model is updated for 600 epochs,

where each epoch consists of 1,000 iterations. We set the

initial learning rate to 10−4 and halve it after 150, 300, and

450 epochs. Then, we use a mini-batch of size N = 4
to fine-tune our SRWarp model on the DIV2KW dataset.

The network is updated for 200 epochs with an initial learn-

ing rate of 5 × 10−5, which is halved after 100, 150, and

175 epochs. For the small modified MDSR architecture,

the training takes about 12 hours on a single RTX 2080 Ti

GPU. With the larger MRDB backbone, we optimize the

model for about 60 hours on two RTX 2080 Ti GPUs.

4

(a) ISR (b) |w×1| (with C) (c) |w×2| (with C) (d) |w×4| (with C)

(e) |w×1| (w/o C) (f) |w×2| (w/o C) (g) |w×4| (w/o C)

Figure S4: Spatially-varying property of multi-scale blending weights. We normalize the map w×s within each sample

for better visualization. (e−g) We do not use the content feature C to estimate the weights w×s and observe how the scale

feature S affects the blending coefficients. The weights may not represent the relative importance of different scales s as the

features W×s are not normalized. Instead, the values indicate which regions are weighted more in each different scale.

𝐅×1
𝐈LR−crop

𝐅×2 𝐅×4
Conv 3 × 3
PixelShuffle × 2

Backbone network

× 1 Feature extractor ℱ×1

Figure S5: Multiscale feature extractor F×s in our SR-

Warp model. For the modified MDSR structure, we adopt

the MDSR [9] model without scale-specific branches as the

backbone network. In the MRDB architecture, the state-

of-the-art RRDB [14] model without upsampling module is

used for the backbone. We note that our feature extractors

F×s share many parts in common across different scales

s for efficient computation [9]. The ×1 feature extractor

F×1 is emphasized in the figure as an example. Each of the

scale-specific features F×s has 64 channels.

𝑜𝑦′
Fully-connected
ReLU

Kernel Estimator 𝒦
𝑜𝑥′3 × 3 offset vectors

for each 𝑥′, 𝑦′ 𝑛48 𝑛96
𝑜𝑥′𝑜𝑥′𝑜𝑥′𝑜𝑥′𝑜𝑥′𝑜𝑥′𝐤64 × 3 × 3 kernels𝐤 𝑥′, 𝑦′× 𝐶𝑛1152

Figure S6: Structure of the kernel estimator K in our

adaptive warping layer. The module takes 18 input val-

ues for each point (x′, y′) in the target coordinate. n de-

scribes the output dimension of fully-connected layers. We

use C = 64 channels for dynamic kernels.

S6. Efficiency of the Proposed Method

Table S2 compares the actual runtime and peak memory

usage of the proposed SRWarp against the meta-upscaling

approaches [4] on the arbitrary-scale SR task. We use a sin-

gle RTX 2080 Ti GPU for all executions to fairly compare

different methods in a unified environment. The SRWarp

model requires much lower memory than Meta-EDSR and

Meta-RDN while achieving comparable performances, as

shown in Table 4 in our main manuscript. Notably, the pro-

posed method is about 2.5 times faster than the Meta-RDN

model while achieving better performance.

5

P P

ResBlock

𝐖×1
× 2
⋯+

𝒞×1
𝐖×2𝐖×4

P P

ResBlock

+ ⋯ P

P

𝒞×2
+

𝒞 𝐂
P PartialConv 3 × 3

Concatenation

1 1

𝒞×4

1c 𝐒𝑛64 𝑛64 𝑛16 𝑛48 𝑛48 𝑛48
1 Conv 1 × 1× 2 𝑛48 𝑛48 𝑛3

ReLUc

𝑤×2𝑤×1
𝑤×4c

Figure S7: Weight prediction in our multiscale blending

module. We omit the input mask m for the partial convo-

lutional layers for simplicity. The blended feature Wblend

is calculated from the warped features W×s and their cor-

responding weights w×s as described in (8). Best viewed

with Section 3.3 in our main manuscript.

P P

ResBlock × 𝑁ℛ
+

Reconstruction ℛ
⋯𝐦

P PartialConv 3 × 3
ReLU

𝐖blend P+ 𝐈SR
Figure S8: Structure of the reconstruction module R. We

use NR = 5 many ResBlocks wich 64 output channels.

Backbone

𝐅×1𝐅×2𝐅×4 A
W

L

M
u

lt
is

ca
le

B
le

n
d

in
g

𝐖×1𝐖×2𝐖×4
Reconstructionℛ

(a) A-R configuration

Backbone

𝐅×1𝐅×2𝐅×4 A
W

L

M
u

lt
is

ca
le

B
le

n
d

in
g

𝐖×1𝐖×2𝐖×4
𝐖blend

P
ar

ti
al

C
o

n
v

3×3

(b) A-M configuration

Backbone

𝐅×1𝐅×2𝐅×4 M
u

lt
is

ca
le

B
le

n
d

in
g

𝐖×1𝐖×2𝐖×4
𝐖blend Reconstructionℛ

B
ic

u
b

ic

W
ar

p
in

g

(c) M-R configuration

Figure S9: Examples of the SRWarp architectures S for

the ablation study. Best viewed with Figure 4 and Table 1

in our main manuscript. (c) Bicubic warping denotes a dif-

ferentiable warping layer with the conventional bicubic in-

terpolation, without our adaptive resampling grid and kernel

estimator K.

Method Peak Mem. (GB) Runtime (ms)

Meta-EDSR [4] 4.96 218

Meta-RDN [4] 5.15 253

SRWarp (MRDB) 3.08 155

Table S2: Efficiency comparison between the proposed

method and meta-upscaling. The evaluation is done on

the fractional-scale B100 [10] dataset with a scale factor of

×3. The runtime is measured over 100 test images in a uni-

fied environment and averaged excluding initialization, I/O,

and the other overheads. We also note that the peak mem-

ory usage does not correspond to the exact amount of mem-

ory each model consumes due to GPU-level optimization,

caching, and many other practical reasons.

S7. Additional Results

Figure S10 shows additional qualitative results from

the proposed warping method. Since we optimize the

widely-used L1 objective function to train our SRWarp, it

is straightforward to introduce perceptual [6] and adver-

sarial [3, 12] loss terms to acquire photo-realistic [8, 14]

warped results (SRWarp+). We first construct a discrimi-

nator network D following Ledig et al. [8], while the fully-

connected layers at the end of the original model are re-

placed to 1 × 1 convolutions [5]. The spectral normaliza-

tion [11] is also applied for stable training. We update the

discriminator network by the corresponding loss term Ldis,

which is defined as follows:

Ldis = − logD (IHR-crop)− log (1−D (ISR-crop)), (S10)

where we crop 96 × 96 patches IHR-crop and ISR-crop from

the original images IHR and ISR to avoid void regions to

be fed to the following discriminator model. We omit av-

eraging over the batch dimension for simplicity. Then, we

alternately optimize the perceptual objective function Lper

for the SRWarp model which is defined as follows:

Lper = α
1

‖m‖
0

‖m⊙ (ISR − IHR)‖1

+ ‖V54 (ISR-crop)− V54 (IHR-crop)‖1
− β logD (ISR-crop),

(S11)

where V54 is a pre-trained VGG-19 [13, 6] network up to

conv5 4 layer, α = 0.002 and β = 0.01 are hyperparam-

eters, respectively. We note that the cropped images ISR-crop

and IHR-crop are aligned so that the VGG-loss term can be

used to improve the perceptual quality of the SR results.

6

2.5576 0.2210 0−0.7039 1.7494 0−0.0001 −0.0007 1
𝑀

SRWarp𝐈LR 𝐈SR1.6870 −1.3375 00.7241 2.2953 0−0.0004 0.0001 1
𝑀

SRWarp𝐈LR 𝐈SR2.4188 0.7133 0−0.8648 2.3039 0−0.0002 0.0001 1
𝑀

SRWarp𝐈LR 𝐈SR3.6209 2.1574 0−1.0929 1.6437 0−0.0005 −0.0003 1
𝑀

SRWarp𝐈LR 𝐈SR2.2145 −0.3566 00.3849 2.1232 0−0.0003 0.0001 1
𝑀

SRWarp𝐈LR 𝐈SR2.4131 −0.6869 00.3137 1.6969 00.0002 −0.0005 1
𝑀

SRWarp𝐈LR
𝐈SR

2.2198 1.4063 0−1.3456 2.5419 0−0.0002 0.0005 1
𝑀

SRWarp𝐈LR 𝐈SR2.4922 0.8256 0−0.8708 2.5899 00.0002 −0.0002 1
𝑀

SRWarp𝐈LR 𝐈SR
(a) ILR, ISR, and M (b) cv2 (c) RRDB (d) SRWarp (e) SRWarp+ (f) GT

Figure S10: More qualitative warping results on various images. RRDB denotes the method which combines the state-

of-the-art ×4 RRDB [14] model with the bicubic warping algorithm from OpenCV [2]. Top four rows: To show the

generalization ability of the proposed method, we choose random DIV2K images (‘0831.png,’ ‘0855.png,’ ‘0864.png,’ and

‘0887.png’) and transformation matrices to test the proposed SRWarp method. Bottom four rows: We construct the novel

Flickr2KWTest dataset from the high-quality Flickr2K [9] images, following the same pipeline of the DIV2KWTest. Patches

are cropped from the Flickr2KWTest ‘000004.png,’ ‘000957.png,’ ‘001219.png’, and ‘001290.png,’ respectively.

7

References

[1] Eirikur Agustsson and Radu Timofte. NTIRE 2017 chal-

lenge on single image super-resolution: Dataset and study.

In CVPR Workshops, 2017. 1

[2] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of

Software Tools, 2000. 7

[3] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative adversarial nets. In NIPS, 2014.

6

[4] Xuecai Hu, Haoyuan Mu, Xiangyu Zhang, Zilei Wang, Tie-

niu Tan, and Jian Sun. Meta-SR: A magnification-arbitrary

network for super-resolution. In CVPR, 2019. 5, 6

[5] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A.

Efros. Image-To-Image translation with conditional adver-

sarial networks. In CVPR, 2017. 6

[6] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual

losses for real-time style transfer and super-resolution. In

ECCV, 2016. 6

[7] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accurate

image super-resolution using very deep convolutional net-

works. In CVPR, 2016. 4

[8] Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero,

Andrew Cunningham, Alejandro Acosta, Andrew Aitken,

Alykhan Tejani, Johannes Totz, Zehan Wang, and Wenzhe

Shi. Photo-realistic single image super-resolution using a

generative adversarial network. In CVPR, 2017. 4, 6

[9] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and

Kyoung Mu Lee. Enhanced deep residual networks for single

image super-resolution. In CVPR Workshops, 2017. 4, 5, 7

[10] David Martin, Charless Fowlkes, Doron Tal, and Jitendra

Malik. A database of human segmented natural images

and its application to evaluating segmentation algorithms and

measuring ecological statistics. In ICCV, 2001. 6

[11] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and

Yuichi Yoshida. Spectral normalization for generative ad-

versarial networks. In ICLR, 2018. 6

[12] Alec Radford, Luke Metz, and Soumith Chintala. Unsuper-

vised representation learning with deep convolutional gener-

ative adversarial networks. arXiv, 2015. 6

[13] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. In ICLR,

2015. 6

[14] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu,

Chao Dong, Yu Qiao, and Chen Change Loy. ESRGAN:

enhanced super-resolution generative adversarial networks.

In ECCV Workshops, 2018. 4, 5, 6, 7

8

