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Abstract

This supplementary materials provide some details of
our work that are not be clearly presented due to space
limitation in our main paper: Sec. 1 describes the details
about n-order composite Bézier curve fitting, how the mo-
tion decay along the curve scale and the architecture of the
Autoencoder Network G; Sec. 2 elaborates the details of
our implementation; Sec. 3 presents the limitation and some
failure cases of our method.

1. More Details of the Methodology

1.1. n-order Composite Bézier Curve Fitting

For a frame H from human portrait video, we as-
sume that there are NH branches in its boundaries SH =
{Ci}NH

i=1. We use ni-order composite Bézier curve to fit
the boundary branch Ci and denote the estimated compos-
ite Bézier curve as Bi. The overall optimization problem
can be written as follows:

min

NH∑
i=1

||Ci −Bi||2, (1)

where a composite Bézier curve Bi is composited by Ni
vanilla Bézier curves and we denote these vanilla Bézier
curves as Bij (i ≤ NS , j ≤ Ni}). The composite Bézier
curve Bi are splitted to Ni Bézier curves by Ni − 1 joints.
There are also Ni − 1 joints on the boundary branch Ci
that correspond to the joints on Bi. Thus, Ci is splitted as
Cij (i ≤ NS , j ≤ Ni}). Thus, the overall optimization
problem is formed as:
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min
∑NH

i=1 ||Ci −Bi||2 = min
∑NH

i=1

∑Ni

j=1 ||Cij −Bij ||2
⇔ min||Cij −Bij ||2, ∀i, j,

(2)
where Bij is a vanilla Bézier curve and in Eq. (2) the orig-
inal optimization problem is splitted into NH × Ni inde-
pendent optimization problems. Thus, we consider the new
optimization problems min||Cij − Bij ||2, ∀i, j. We omit
the subscripts i, j for simplicity.

According to the definition of n-order Bézier curve, a
Bézier curve B can be rewritten as follows,

B(τ) =

n∑
k=0

(
n

k

)
τk(1− τ)n−kPk, (3)

where τ ∈ [0, 1] represents the relative position of point
B(τ) on curve B and

(
n
k

)
is the number of k-combinations.

If we denote the components on x, y, z axis of B as
Bx, By, Bz and the components on x, y, z axis of Pk as
P xk , P

y
k , P

z
k respectively, e.g., B = (Bx, By, Bz), Pk =

(P xk , P
y
k , P

z
k ). Then Eq. (3) can be rewritten as:

 Bx(τ) =
∑n
k=0

(
n
k

)
τk(1− τ)n−kP xk

By(τ) =
∑n
k=0

(
n
k

)
τk(1− τ)n−kP yk

Bz(τ) =
∑n
k=0

(
n
k

)
τk(1− τ)n−kP zk

, (4)

similarly, we denote boundary C = (Cx, Cy, Cz) where
Cx, Cy, Cz are the boundary C’s components on axis
x, y, z. We denote a point on the skeleton C as C(τ) =
(Cx(τ), Cy(τ), Cz(τ)) (τ ∈ [0, 1]). The optimization
problem in Eq. (2) as follows:

min||C −B||2 ⇔

 min||Cx −Bx||2
min||Cy −By||2
min||Cz −Bz||2

. (5)
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For simplicity, we will optimize min||Cx−Bx||2 as ex-
ample and the optimization problem can be expanded as fol-
lows:

min ||Bx − Cx||2 =
∫ 1

0
||Bx(τ)− Cx(τ)||2dτ =

lim
card(T )→∞

∑
τi∈T
||Bx(τi)− Cx(τi)||2 =

lim
card(T )→∞

∑
τi∈T
||
∑n
k=0

(
n
k

)
τki (1− τi)n−kP xk − Cx(τi)||2

,

(6)
where T = {τ0, τ1, · · · , τm} is a set of uniformly sampled
points of τ ∈ [0, 1] and card(T ) = m+ 1 is the cardinality
of T . If we denote aik =

(
n
k

)
τki (1−τi)n−k. Thus, we have:

∑
τi∈T
||
∑n
k=1 aikP

x
k − Cx(τi)||2 = ||Ap− b||2 =∥∥∥∥∥∥∥

 a00 · · · a0n
...

. . .
...

am0 · · · amn


 P x0

...
P xn

−
 Cx(τ0)

...
Cx(τm)


∥∥∥∥∥∥∥
2

,

(7)
where A ∈ R(m+1)×(n+1), p ∈ R(n+1)×1, b ∈
R(m+1)×1. We need to solve the p by minimizing ||Ap −
b||2. Thus, the optimization problem in Eq. (1) is con-
verted to solve the least square problem Eq. 7. The so-
lution p̂ = arg minp||Ap − b||2 can be computed by
Gauss–Newton algorithm or p̂ = A†p where A† is the
pseudo inverse matrix of A.

1.2. Motion Decay Along Curve Scale

In the main paper, the motion at point Bi(1, τi) is de-
noted asMe

Bi(1,τi)
. The point Bi(1, τi) lies at a composite

Bézier curve Bi that correspond to a motion seed. The mo-
tionMe

Bi(1,τi)
will decay when it spreads from Bi(1, τi) to

Bi(ωi, τi). We have the following motion decay function:

Me
Bi(ωi,τi)

= λ(ωi) · Me
Bi(1,τi)

, (8)

where λ(ωi) is the motion decay factor that is determined by
the curve scale factor ωi. In practice, we design two differ-
ent decay functions as Fig. 1 shows. In case that the motion
seed of the mouth spreads to the eyes area, we use ωmin and
ωmax to restrict the area to where a motion seed can spread.
We find that performances of the linear decay and sine de-
cay functions are similar. Thus, we use the more simplified
linear decay function in our experiments. We leave the ex-
ploration of decay functions for the future work.

1.3. Architecture of the Autoencoder G

The architecture of the Autoencoder network G is
demonstrated in Tab. 1. In the table, the Resolution de-
notes the spatial resolution of the feature map. EncBlock
denotes a 2D convolutional layer (stride is 2, padding is 1,
kernel size is 4× 4). DecBlock denotes a 2D convolutional

Figure 1: Motion Decay. (a) linear decay: the motion linearly
decay with the curve scale when it deviate 1. (b) sin decay: we use
the sine function to describe how the motion decays smoothly.

layer (stride is 2, padding is 1, kernel size is 4×4), followed
by a PixelShuffle [1] layer (upscale factor is 2).

Table 1: Architecture of the AutoEncoder Network G

Layer Name Resolution Layer Structure
Input 256× 256 Input Image
E1 128× 128 EncBlock 3→ 64 + LeakyReLU(0.2)
E2 64× 64 EncBlock 64→ 128 + LeakyReLU(0.2)
E3 32× 32 EncBlock 128→ 256 + LeakyReLU(0.2)
D3 64× 64 DecBlock 256→ 128 + ReLU
D2 128× 128 DecBlock 128→ 64 + ReLU
D1 256× 256 DecBlock 64→ 3

2. Implementation Details
In the Parametric Shape Modeling, we find that it is hard

to define nose, ears, eyebrows and jawline for pareidolia
faces. Thus, we only animate the mouth and eyes of parei-
dolia faces. The mouth of a pareidolia face is animated
by the inner lip boundary of the given human video. For
the mouth or eyes of a human/pareidolia face, its boundary
is splitted into two branches (upper and lower halves) and
each branch is parameterized as a composite Bézier curve.
In practice, we find that each branch of the mouth/eye can
be precisely parameterized by a composite Bézier curve de-
fined by 5-7 control points.

In the Expansionary Motion Transfer, for any pixel loca-
tion p, we compute ωi, τi that correspond to the composite
Bézier curve Bi (related to motion seed), which is prepared
for our motion spread strategy. Both the motion field and in-
verse motion field are computed on the discrete pixel grid.
We regard the motion field Me as a function of the pixel
grid and infer the inverse motion field

←−−
Me as the inverse

function of Me. We use first-order difference of Me in
d
dp

←−−
Me(p). In experiments, we find that the First-order Mo-

tion Approximation works well when ||∆p|| = 1, 2 and
increasing ||∆p|| does not bring further improvement.

In the Unsupervised Texture Animator, the image resolu-
tion is 256×256 for all the input human/pareidolia faces and
the resolution of the output pareidolia faces is 256 × 256,
too. During training the Autoencoder network G, we set the
loss weights α1 = α2 = 1 empirically.
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3. Limitation
large poses of human faces: The facial motion extracted

from human faces strongly relies on the robustness of the fa-
cial 3D landmark alignment tool. For large poses of human
faces, the 68 3D landmarks extracted by a face alignment
tool might not be good enough, which makes the extracted
facial motion of human faces inaccurate. Then, the subse-
quent Expansionary Motion Transfer and Texture Animator
will also be influenced. We present some failed results in
Fig. 2.

Figure 2: A failure case caused by large poses of human faces.
Note that the pareidolia face does not well imitate the eyes move-
ment of the human face.

automatic boundary extraction: Currently, our method
requires us to label the facial boundaries for each input
pareidolia face. Thus, our pareidolia face reenactment is
not a fully automatic method and we leave the automatic
boundary extraction for pareidolia as future exploration. In
addition, as shown in Fig. 3, it is hard to label the facial
boundaries for some pareidolia faces such as side faces.

Figure 3: It is hard to label the facial boundaries for these pareido-
lia faces

failure cases: For pareidolia faces with very complex
boundaries and textures of facial parts, our proposed parei-
dolia face reenactment method might not well. Note that
we make the first attempt in animating a pareidolia face by
the facial motion of a human face, we present some failure
cases in Fig. 4.
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