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1. Updating Rules
Here we introduce the updating rules of the within- and

between-class scatter matrices when two sibling nodes are
merged into their parent node. Let u and v be two sibling
nodes of a common parent node w. If u and v are merged
into node w, then the average feature vector of all the cate-
gories associated with node w is computed by:

z(w) =
1

|Yw| ·K
∑

y∈Yw

∑K

k=1
zyk, (1)

where categories associated with node w is the union of cat-
egories from u and v, i.e., Yw = Yu ∪ Yv . With z(w), the
between-class scatter matrix is computed as follows:

Sw
B =

1

|Yv|
∑

y∈Yw

(zy − z(w))(zy − z(w))T . (2)

The within-class scatter matrix is updated by directly com-
bining the within-class scatter matrices of node u and v:

Sw
W =

|Yu|
|Yu|+ |Yv|

Su
W +

|Yu|
|Yu|+ |Yv|

Sv
W . (3)

Note that the updated scatter matrices should be properly
normalized as the determinant is very sensitive to the scal-
ing factor of matrices.

2. Model Architectures
For most experimental settings, we follow the setup

adopted in [13]. Here we list the architecture details for
better clarification.

*Equal contribution
†Corresponding author

• Wide Residual Network (WRN) [16]. “WRN-40-2”
represnets wide ResNet with depth 40 and width factor
2.

• ResNet [2]. ResNet56 and ResNet20 are cifar-style
ResNets with 3 groups of basic blocks, each with 16,
32, and 64 channels respectively. ResNet50 follows
the ImageNet-style ResNet with Bottleneck blocks and
more channels.

• MobileNetV2 [11]. We set the width multiplier to be
0.5 in the experiments.

• VGG [12]. The VGG used in our experiments are
adapted from its original ImageNet counterpart.

• ShuffleNetV1 [18]. ShuffleNets are proposed for effi-
cient training and we adapt them to input of size 32x32.

3. Additional Experimental Results
3.1. Top-5 accuracy results

As top-5 accuracy is a widely-used evaluation metric
on ImageNet, here we make comparisons between the pro-
posed TDD and other competitors on tiny-ImageNet using
top-5 accuracy to give a more comprehensive view of the
proposed method. Experiments are conducted under the
homogeneous distillation settings (ResNet56→ ResNet20,
WRN 40 2 → WRN 16 2, WRN 40 2 → WRN 40 1)
and the heterogeneous distillation settings (ResNet50 →
MobileNetV2, WRN 40 2 → ShuffleNetV1, ResNet50 →
VGG8). The experimental results are provided in Table 1.
Based on these results, we make following three main ob-
servations.

• Similar to the results of top-1 accuracy, most prior
distillation methods yield inferior performance to the
vanilla KD in the metric of top-5 accuracy. It again
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Table 1. Top-5 accuracy of the homogeneous and the heterogeneous distillation on tiny-ImageNet (in %). Experiments are repeated for five
times and the average results are provided.

Homogeneous Distillation Heterogeneous Distillation

Teacher ResNet56 WRN 40 2 WRN 40 2 ResNet50 WRN 40 2 ResNet50
Student ResNet20 WRN 16 2 WRN 40 1 MobileNetV2 ShuffleNetV1 VGG8

Teacher 81.79 83.45 83.45 86.82 83.45 86.82
Student 78.11 81.66 80.58 81.79 82.35 79.33

KD [4] 79.42 82.80 82.31 82.05 85.69 82.43
Fitnets [10] 78.02 81.65 N/A 80.81 N/A 79.66

AT [17] 79.23 82.70 81.46 76.83 85.06 77.71
FSP [15] 77.59 81.26 N/A N/A N/A N/A

FT [5] 79.28 82.40 80.95 82.04 83.73 80.83
PKT [8] 78.79 82.26 81.68 82.50 84.63 80.73

SPKD [14] 79.38 80.78 79.37 81.61 85.71 81.11
VID [1] 78.93 82.22 81.16 81.38 83.96 73.30
CC [9] 78.08 81.34 80.39 81.46 82.73 79.03

RKD [7] 78.45 81.27 81.02 82.10 83.79 79.47

TDD (Ours) 79.56±0.04 82.92±0.09 82.57±0.11 82.20±0.08 85.96±0.15 82.82±0.12
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Figure 1. Visualization of feature distributions after linear discriminant analysis using t-SNE [3]. The First Row: the 1-st, the 19-th, the
37-th and the 55-th layers (from left to right) in ResNet56. The Second Row: the 1-st, the 7-th, the 13-th and the 19-th layers (from left to
right) in ResNet20.

proves that the vanilla KD is a strong baseline in the
field of knowledge distillation.

• Surprisingly, we can see that under the top-5 accuracy,
many prior methods can not match the trivial student
without any distillation, in both the homogeneous dis-
tillation settings and the heterogeneous distillation set-
tings.

• The propose TDD consistently outperforms the vanilla
KD and other competitors, which demonstrates the su-

periority of the proposed method to state-of-the-arts.

3.2. Visualization of Feature Distributions

Here we plot the feature distributions in different layers
of both the teacher (ResNet56) and the student (ResNet20)
models. Note that here the student model is trivially trained
without any distillation methods. Results are shown in Fig-
ure 1. It can be seen that although the student mode is
trained without any knowledge distilled from the teacher,
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Figure 2. The dendrograms of category relationships produced from different layers from ResNet56 on CIFAR-10.
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Figure 3. The decision trees produced from different layers from ResNet56 on CIFAR-10. “Acc” in each node denotes the accuracy via
nearest neighbor search in the feature subspace after linear discriminant analysis.
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Figure 4. Visualization of the dendrograms produced from the 1-st (top) and the 13-th (bottom) layers in WRN 40 2.

the feature distributions from them share several similari-
ties.

• In both the teacher and the student models, the fea-
tures are becoming increasingly distinguishable from
the first layer to the last layer. In early layers, the fea-
tures from different categories are mixed together in

early layers. However, when it reaches the last layer,
the features from different categories cluster into dif-
ferent regions, which makes the feature space ready for
final classification.

• Although the early layers exhibit poor discriminant
ability for precise classification, they show great po-
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Figure 5. Visualization of the dendrograms produced from the 25-st (top) and the 37-th (bottom) layers in WRN 40 2.

tential to make some coarse-grained recognition. For
example, we can find that even in the first layer, the
features from automobile, truck, plane and ship, which
are under the umbrella of vehicles, tend to cluster to-
gether. Features from the other categories that are un-
der the umbrella of animals cluster into another region.
Vehicles and animals can be easily differentiated in

these early layers.

3.3. Visualization of the Decision Process

Here we provide more visualization results for a better
understanding of the decision process in deep neural net-
works. The dendrograms and the decision trees from dif-
ferent layers of ResNet56 are provided in Figure 2 and Fig-
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Figure 6. The decision tree produced after the first layer in WRN 40 2 on CIFAR-100. The leaf nodes are painted with blue borders. “Acc”
denotes the accuracy via nearest neighbor search in the feature subspace after linear discriminant analysis.
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Figure 7. The decision tree produced after the 13-th layer in WRN 40 2 on CIFAR-100. The leaf nodes are painted with blue borders.
“Acc” denotes the accuracy via nearest neighbor search in the feature subspace after linear discriminant analysis.

ure 3, respectively. We can see that the dendrograms and
the decision trees change from layer to layer, which implies
that different layers are actually making different decisions.
However, they will not change dramatically between two

successive layers as ReLU [6] is actually a sublinear func-
tion. Another observation is that within each layer, the deci-
sion process from the root node to the leaves in the decision
tree is conducted in a coarse-to-fine manner, with high-to-
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Figure 8. The decision tree produced after the 25-th layer in WRN 40 2 on CIFAR-100. The leaf nodes are painted with blue borders.
“Acc” denotes the accuracy via nearest neighbor search in the feature subspace after linear discriminant analysis.

low accuracy. The higher accuracy of coarse-grained clas-
sification is attributed to two main factors. (1) The coarse-
grained classification has fewer category options, and thus
the baseline accuracy of random guess is higher. For ex-
ample, a random 2-way classification attains 50% accuracy,
while a random 10-way classification reaches only 10%. (2)
The misclassification usually takes places within the coarse-
grained superclass, which is the property we exploit in the
proposed distillation method. To demonstrate the contri-
bution of the second factor better, we compute the baseline
accuracy of random guess as follows. Here we take the deci-

sion tree from the first layer of ResNet56 as an example, as
shown in Figure 3 (a). The average classification accuracy
ACCavg for all the categories in the leaf nodes is 22.9%.
Based on this, for the 2-way coarse-grained classification,
i.e., S1 ={airplane, ship} versus S2 ={frog, bird, deer, au-
tomobile, truck, horse, cat, dog}, the classificaiton accuracy
by the random guess for data in S1 is

ACCS1 = ACCavg+(1−ACCavg)/9∗(|S1|−1) = 31.5%,
(4)
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Figure 9. The decision tree produced after the 37-th layer in WRN 40 2 on CIFAR-100. The leaf nodes are painted with blue borders.
“Acc” denotes the accuracy via nearest neighbor search in the feature subspace after linear discriminant analysis.

and the accuracy of the random guess for data in S2 is

ACCS2
= ACCavg+(1−ACCavg)/9∗(|S2|−1) = 82.8%.

(5)

It can be seen that the random-guess accuracies of S1 and S2
are both significantly lower than the actual accuracy (59.4%
for S1 and 87.4% for S2) shown in Figure 3 (a), verifying
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the coarse-to-fine decision process underlying deep neural
networks.

The dendrograms produced from WRN 40 2 on CIFAR-
100 are depicted in Figure 4 and 5. The corresponding deci-
sion trees are provided in Figure 6, 7, 8 and 9, respectively.
On CIFAR-100, similar results are also observed to those
from CIFAR-10. All these results validate the universality
of the coarse-to-fine decision process underlying deep neu-
ral networks.
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