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A. Appendix
A.1. Code for the BoT block

We provide the exact code used for implement-
ing the Multi-Head Self-Attention (MHSA) in 2D
with relative-position encodings as well as the imple-
mentation of BoT block in this gist link: https:
/ / gist . github . com / aravindsrinivas /
56359b79f0ce4449bcb04ab4b56a57a2.

A.2. Implementation: COCO Instance Segmenta-
tion and Object Detection

Our implementation is based on the Cloud TPU
Detection codebase - https : / / github . com /
tensorflow / tpu / tree / master / models /
official/detection. Our canonical setting uses
the following hyperparameters which are updated in
configs/maskrcnn_config.py:

• output_size of 1024× 1024.

• aug_scale_min=0.8,aug_scale_max=1.25

• mrcnn_head:num_convs=4,
num_filters=256,mask_target_size=28

• frcnn_head:num_convs=4,
num_filters=256,fc_dims=1024,
num_fcs=1

• rpn_head:min_level=2, max_level=6,
anchors_per_location=3,
num_convs=2,num_filters=256

• fpn:min_level=2,max_level=6

• anchor: num_scales=1,anchor_size=8,
min_level=2,max_level=6

For all experiments, we use L2 weight decay of 4e −
5, sync-batch-norm with momentum 0.997 and epsilon 1e-
4. We use batch norm in the backbone, FPN, RPN head,
FRCNN head and MRCNN head. We initialize backbone

weights with pre-trained ImageNet checkpoints and fine-
tune all the weights (including the batch-norm parameters)
as specified in MoCo [6].

Table 1 presents the hyperparameters for models that we
train with batch size 64 on 8 TPU-v3 cores (equivalent to
DGX-1) which applies to most of our models, in particular,
all the models that we train with image size 1024× 1024.

Type Epochs Train Steps LR Schedule

1x 12 22.5k [15k, 17.5k]
2x 24 45k [37.5k, 40k]
3x 36 67.5k [60k, 65k]
6x 72 135k [120k, 130k]

Table 1: Learning Rate Schedules for the 1x, 2x, 3x and 6x
settings for models trained with global batch size of 64, 8
TPU-v3 cores, 16 GB HBM per cores, learning rate 0.1 with
schedule [0.01, 0.001]. The learning rate is initially warmed
up for 500 warmup steps from 0.0067.

For models that do not fit with batch size of 8 per core
(for example, the ones that train with 1280 × 1280), we
train with a global batch size of 128 on 32 TPU-v3 cores
(4 images per core). The 6x schedule for these models that
train with 32 cores corresponds to training with 67.5k steps
(since batch size 128 is double 64), with [60k, 65k] learning
rate schedule. The learning rate is 0.15 with schedule [0.015,
0.0015] with 500 warmup steps started from 0.0067.

For the model that achieves best results (44.4% mask
AP) with ResNet-200 backbone and BoTNet structure for
blockgroup c5, we use 8 convolutions in the MRCC head.

For our object detection experiments, we just turned
off the mask branch by setting the include_mask
flag as False and eval_type as box instead of
box_and_mask.

A.3. BoTNet improves over ResNet for Object De-
tection

Does BoTNet improve upon ResNet for the task of object
detection as well? We verify this through experiments with
the Faster R-CNN framework (Table 2). We observe that
BoTNet indeed improves over ResNet significantly. BoT
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R50 improves upon R50 by a significant margin of + 1.6%
APbb

S (APbb for small objects). These results suggest that self-
attention has a big effect in detecting small objects which
is considered to be an important and hard problem for de-
ploying object detection systems in the real world. This
result is in contrast with DETR [2] which observes a big
improvement on large objects but not on small objects. We
believe that introducing self-attention in the backbone ar-
chitecture might help fix the lack of gains on small objects
in DETR. Finally, we study if larger images would further
benefit BoTNet for object detection. Using a multi-scale
jitter of [0.1, 2.0] with 72 epoch training and image size
of 1280 × 1280, we see that BoT R152 achieves a strong
performance of 48.4% APbb.

Backbone APbb APbb
S APbb

L

R50 41.5 24.9 54.3
BoT50 43.1 (+ 1.6) 27.6 (+ 2.7) 55.7 (+ 1.3)
R101 42.4 24.5 55.0
BoT101 44.3 (+ 1.9) 26.5 (+ 2.0) 57.5 (+ 2.5)
R152 45.1 30.1 56.6
BoT152 48.4 (+ 3.3) 32.7 (+ 2.6) 60.6 (+ 4.0)

Table 2: BoTNet for Faster R-CNN: The first four rows are
trained for 36 epochs, jitter [0.8, 1.25], image size 1024 ×
1024. Final two rows are trained for 72 epochs with 1280×
1280 image size, jitter [0.1, 2.0] using v3-32 Cloud TPU.

A.4. Why replace all three c5 spatial convolutions?

Figure 1: Replacement configs for BoTNet in the c5 block-
group of a ResNet

Is replacing all the 3 spatial convolutions in c5 the mini-
mum effective change or could it be simplified even further?
We perform an ablation study on the replacement design
in order to answer this question (Please refer to Table 3,
Figure 1). The baseline R50 and BoT50 go by the notation
[0,0,0] and [1,1,1] since the former does not replace
anything while the latter replaces the spatial convolution
in all three c5 blocks. As mentioned already, the first re-
placement in c5 operates on 64× 64 feature map while the
remaining two operate on 32 × 32. We ablate for the con-
figs: [0,0,1], [0,1,1] and [1,0,0]. The first two
configs test how useful is the replacement when performed
only on the smaller 32× 32 featuremap(s) once and twice re-

spectively, while the last tests how useful is the replacement
when performed only on the larger 64× 64 featuremap.

First, we see that in terms of aggregate measures such
as APbb and APmk, each of the configs for BoT50 is a
strict improvement over R50, with similar performance.
Config. [1,0,0] is closer to the performance of BoT50
([1,1,1]) compared to the other configurations, however
a difference of 0.2 APbb is within the noise typically ob-
served in COCO experiments. It is indeed surprising that
just a single self-attention replacement layer right at the end
([0,0,1]) provides a visible gain of 1.3 APbb. When con-
trasted with the performance of R101 (43.2 APbb and 38.4
APmk), the config. [0,0,1] is very much competitive with
43.4 APbb and 38.6 APmk, with more efficient compute step-
time on the TPU (1.2x faster). Nevertheless, the gains on
large objects for the [0,0,1] config (+ 0.6 APbb

L ) are not
as significant as those in R101 (+ 1.6 APbb

L ).
Among the different configs for BoT50, we see that

[1,0,0] and [0,1,1] are the best in terms of good per-
formance on both small and large objects. Surprisingly, the
actual BoTNet config ([1,1,1]) shows significant boost
on small objects (2.6 APbb

S ), but does not show substantial
gain on large objects, even relative to other ablation configs.
We suspect this could be due to poor optimization and leave
it for future work to carefully understand how self-attention
affects the performance on small and large objects.

Based on these ablations, consider the question: is it bet-
ter to replace convolutions with self-attention in c5 (BoT50)
vs stacking more convolution layers (R101)? An argument
in favor of R101 is that the gains are clear on both small
and large objects unlike BoT50 where the gains are much
more on small objects. However, there does exist a BoT50
config that can strictly improve upon R101, ie the [0,1,1]
config. It has similar properties to R101 (gain on both small
and large objects), similar performance on aggregate mea-
sures like APbb and APmk, with a more efficient compute
steptime. Hence, we can affirmatively say that self-attention
replacement is more efficient than stacking convolutions.

A.5. BoT block with stride

The first block in the final block group c5 of a ResNet
runs the spatial 3× 3 convolution with a stride 2 on a resolu-
tion that is 2x the height and width of the other two blocks
in the group. Unlike spatial convolutional layers, the MHSA
layers in BoT blocks do not implement striding. In fact,
implementing strided self-attention without strided convo-
lutions (both local and global) is an engineering challenge
which we leave for future work. Our goal is to only use
existing primitives. So, we adopt a very simple fix of using
a local 2× 2 Avg. Pooling with stride of 2 for implementing
the spatial downsampling in the first BoT block. As noted in
our ablation on placement of the attention (Section A.4), we
see that the self-attention in the first block is very useful for



Backbone c5-attn. TC Time APbb APbb
S APbb

L APmk APmk
S APmk

L

R50 [0,0,0] 786.5 42.1 22.5 59.1 37.7 18.3 54.9
BoT 50 [0,0,1] 813.7 43.4 (+ 1.3) 23.7 (+ 1.2) 59.7 (+ 0.6) 38.6 (+ 0.9) 19.0 (+ 0.7) 55.6 (+ 0.7)
BoT 50 [0,1,1] 843.87 43.4 (+ 1.3) 24.0 (+ 1.5) 60.2 (+ 1.1) 38.6 (+ 0.9) 19.4 (+ 1.1) 55.9 (+ 1.0)
BoT R50 [1,0,0] 983.2 43.7 (+ 1.6) 23.9 (+ 1.4) 60.6 (+ 1.5) 38.9 (+ 1.2) 19.3 (+ 1.0) 55.9 (+ 1.0)
BoT 50 [1,1,1] 1032.7 43.6 (+ 1.5) 25.1 (+ 2.6) 59.4 (+ 0.3) 38.9 (+ 1.2) 20.7 (+ 2.4) 55.5 (+ 0.6)
R101 [0,0,0] 928.7 43.3 (+ 1.2) 24.2 (+ 1.7) 60.7 (+ 1.6) 38.4 (+ 0.7) 19.6 (+ 1.3) 56.8 (+ 1.9)
BoT101 [1,1,1] 1174.9 45.5 (+ 2.2) 26.0 (+ 1.8) 62.3 (+ 1.6) 40.4 (+ 2.0) 21.1 (+ 1.5) 58.0 (+ 1.2)

Table 3: Ablation study on the replacement design in BoTNet: All models are trained with the canonical config with image size
1024× 1024, jitter [0.8, 1.25], 36 epochs. TC Time refers to TPU-v3 Compute Step Time (in milliseconds) during training.

gain on small objects. At the same time, it involves running
self-attention on a resolution of 64× 64, equivalent to 4096
tokens and 4096×4096 query-key matrix. We believe a well
optimized strided attention implementation will drastically
make this more efficient in future. The block is explained in
Figure 2.

Figure 2: BoT block with stride=2, implemented in the first
block of the c5 blockgroup in a BoT-ResNet. Since the in-
coming tensor has 1024 channels and has a stride of 16 with
respect to input resolution, there is a projection shortcut with
a strided 1× 1 convolution. The self-attention operation in
the MHSA is global and maintains the resolution. Therefore,
we use local 2x2 Avg. Pooling with a stride 2 on top of it.

A.6. BoTNet-S1

Figure 3: The c5 (final) block groups for ResNet (left),
BoTNet (middle) and BoTNet-S1 (right).

A.7. Non-Local Comparison

The main paper offered a comparison between Non-Local
Nets and BoTNets as well as an implementation of BoT
blocks in the design of Non-Local Nets. In order to make it
more clear visually, we provide an illustration of all designs
in Figure 4. The figure clearly highlights the differences be-
tween inserting blocks vs replacing blocks. We note that the
NL style insertion requires careful placement as prescribed
in the original paper. On the other hand, simply replacing
the final three blocks is a convenient design choice. Never-
theless, BoT blocks are still an improvement over vanilla NL
blocks even in the insertion design, likely due to using multi-
ple heads, relative position encodings, and value projection.
As already explained in the main paper, even the replacement
design of BoTNet performs better than the insertion design
of vanilla NL, likely due to performing more self-attention
(three vs one). Adding value projections to the NL block
only improved the performance by 0.2 APbb, while the gains
from using 4 heads in the MHSA layer in BoT block only
helps by 0̃.2APmk. Therefore, BoT blocks can be viewed
as an improved implementation of NL blocks with relative
position encodings being the main driver of the performance
difference.



Figure 4: First: Regular ResNet 50 with [3,4,6,3]
blockgroup structure. Second: Non-Local (NL) block in-
serted in the c4 blockgroup of a ResNet, between the pre-
final and final ResNet block, as specificed by Wang et.
al [19]. Third: BoT block inserted in the same manner as a
NL block with the differences between a BoT and NL block
highlighted in in the main paper. Fourth: 2 BoT blocks, one
each in c4,c5 blockgroups inserted in the same manner
(between pre-final and final block) as prescribed by Wang et
al. [19]. Fifth: BoT50, where the final three ResNet blocks
are replaced by BoT blocks.

A.8. Comparison to Squeeze-Excite

One may argue that squeeze-excitation blocks and self-
attention blocks are very much related in the sense that both
of them perform global aggregation and provide that as a
context to convolutional models. Therefore, it is natural
to ask for a comparison between the two blocks especially
given that Squeeze-Excite (SE) blocks are computationally
cheap and easy to use compared to BoT blocks. Table 4
presents this comparison. For fair comparison to BoTNet,
we only place SE blocks in c5 blockgroup and call this setup
as R50+ c5-SE. We do not see any difference between R50
and R50 + c5-SE. However, we note that it is possible to
get visible gains on top of R50 when placing SE blocks in
all bottleneck blocks throughout the ResNet and not just in
c5. Such a change (using SE in c2,c3,c4) is orthogonal
to BoTNet and can be combined with BoTNet by using
BoT blocks in c5 and SE blocks in c2,c3,c4. We leave
exploration of such architectures for future work.

A.9. ImageNet Test-Set Accuracy

As has been the convention since 2017, our results in
the paper only report and compare the validation set (50K
images) accuracy on the ImageNet benchmark. However,
the EfficientNet paper [14] presented updated results on

Backbone APbb APmk

R50 42.1 37.7
BoT50 43.6 (+ 1.5) 38.9 (+ 1.2)
R50 + c5-SE 42.1 37.6 (- 0.1)

Table 4: Comparing R50, BoT50 and R50 + c5-SE; all 3
setups using the canonical training schedule of 36 epochs,
1024× 1024 images, multi-scale jitter [0.8, 1.25].

the ImageNet test-set (100K images submitted on http:
//image-net.org). We also provide the results on the
ImageNet test set for the ablation setup in Table 10, to verify
that there are not any surprising differences between the
validation and test set (Table 5 presents similar numbers to
Table 10).

Backbone top-1 acc.

SE50 79.3
BoT-S1-50 80.3 (+ 1.0)

Table 5: ImageNet test set results in a further improved
training setting with SE blocks and SiLU non-linearity: 200
epochs, batch size 4096, weight decay 4e-5, RandAugment
(2 layers, magnitude 10), and label smoothing of 0.1. R50
with SE blocks is referred to as SE50.

A.10. Resolution Dependency in BoTNet

Architectures such as BoTNet and ViT that use self-
attention end up adopting position encodings [17]. This
in turn creates a dependency at inference time to use the
same resolution that the model was trained for. For exam-
ple, taking T7 trained at 384× 384, and running inference
with a different resolution (say 512× 512) would introduce
additional positional encodings. Purely convolutional ar-
chitectures such as ResNets and SENets do not face this
problem. We leave it for future work to investigate various
design choices in making Transformer based architectures
for vision, resolution independent at inference time. Some
potential ideas are multi-resolution training with bilinearly
interpolated positional encodings, using a spatial convolu-
tion before every self-attention operation (which could be
performed without any positional encoding), etc.

While BoTNet-like hybrid architectures benefit from the
spatial dependencies implicitly learned by the convolutional
stack prior to attention, the reason we still use position en-
codings is because of the improvements that arise from using
them. We also observe similar performance gains on the Im-
ageNet benchmark. Using no position encoding at all for the
BoT blocks still provides a gain of + 0.7% top-1 accuracy,
but lags behind the gains from using position encodings (+
1.2%). Further, relative position encoding is not as important
in ImageNet benchmark as it is in the COCO benchmark.
Absolute position encodings provide similar gains to relative

http://image-net.org
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posiition encodings. We believe this is likely due to the
nature of the task being less contextual (and doesn’t involve
precise localization) for image classification compared to
detection and segmentation. We retain relative position en-
codings for the ImageNet experiments for consistency with
the architecture used for COCO. However, for practitioners,
we recommend using absolute position encodings for image
classification, especially when using convolutions prior to
attention, since it is faster (for training and inference) and
simpler to implement.

Backbone Pos-Enc top-1 acc.

SE50 N/A 79.2
BoT-S1-50 - 79.9 (+ 0.7)
BoT-S1-50 Abs 80.2 (+ 1.0)
BoT-S1-50 Rel 80.4 (+ 1.2)

Table 6: ImageNet (val) results in a further improved training
setting with SE blocks and SiLU non-linearity: 200 epochs,
batch size 4096, weight decay 4e-5, RandAugment (2 layers,
magnitude 10), and label smoothing of 0.1. R50 with SE
blocks is referred to as SE50.

B. BoTNet and SENet Block Configs
Please refer to Table 7 for block configs. of the various

BoTNets and SENets used for the ImageNet experiments.

Model Block Groups

ResNet-50 [3,4,6,3]
ResNet-101 [3,4,23,3]
ResNet-152 [3,8,36,3]
SENet-50 [3,4,6,3]
SENet-101 [3,4,23,3]
SENet-152 [3,8,36,3]
SENet-350 [4,40,60,12]
BoTNet-S1-59 [3,4,6,6]
BoTNet-S1-77 [3,4,6,12]
BoTNet-S1-110 [3,4,23,6]
BoTNet-S1-128 [3,4,23,12]

Table 7: Backbones and their block group configurations.
All of them use the standard convolutional stem of the
ResNet [7]. [3,4,6,6], refers to the use of 3, 4, 6 and 6
blocks respectively in stages c2,c3,c4,c5. For BoTNet-
S1 design, the final blockgroup c5 uses a stride of 1 for all
blocks. In order to reflect the improved training setting used
in EfficientNets, the four BoTNet models (above) make use
of SE blocks for blocks in the groups c2,c3,c4.

B.1. Hyperparameters

Please refer to Table 9 for the hyperparameters used for
all backbones presented for ImageNet classification results
in Table 8.

B.2. M.Adds and Params

In-built tools for computing parameters and FLOPs (2 *
M.Adds) are often not accurate when used on architectures
with einsums. We therefore explicitly calculated the
M.Adds we report in this paper using this script https:
/ / gist . github . com / aravindsrinivas /
e8a9e33425e10ed0c69c1bf726b81495.

B.2.1 Effect of SE blocks, SiLU and lower weight de-
cay

Other aspects of improved training of backbone architec-
tures for image classification has been the use of Squeeze-
Excitation (SE) blocks [9], SiLU non-linearity [5, 12, 8] and
further lowering the weight decay (for eg., EfficientNet uses
1e-5). When employing SE blocks in BoTNet and BoTNet-
S1, we only do so for the ResNet blocks that employ 3× 3
convolutions since self-attention is already designed for con-
textual global pooling. As expected, these changes lead to
further improvements in the accuracy for all the models, with
the gains from BoTNet remaining intact over the baseline
SENet (ResNet with SE blocks) (Table 10).

The improvements from Table 10 suggest that BoTNets
are a good replacement for ResNets and SENets, especially
when trained with data augmentations and longer training
schedules. We have also made sure to present strong base-
lines (eg. 79.2% top-1 acc. SENet-50).

B.3. Discussion

Figure 5 presents all the three model families (SENets, Ef-
ficientNets and BoTNets) together in one plot. As discussed
in the previous sections, SENets are powerful models with
strong performance that is better than EfficientNets and can
be scaled all the way up to 83.8% top-1 accuracy without any
bells and whistles such as ResNet-D, etc. BoTNets initially
perform worse than SENets (e.g. T3) but begin to take over
in terms of performance from T4 and strictly outperform
EfficientNets, especially towards the end. EfficientNets do
not scale well, particularly in the larger accuracy regime.

Recently, Transformer based models for visual recogni-
tion have become very popular since the Vision Transformer
(ViT) model [4]. While our paper was developed concur-
rently to ViT, there has been a lot of follow-up to ViT such
as DeiT [15] that have further improved the results of ViT
on ImageNet-1K through regularization and distillation. As
seen in the results and emphasized already, DeiT-384 is out-
performed by both SENets and BoTNets currently when not
considering distillation. This suggests that convolutional
and hybrid (convolution and self-attention) models are still
strong models to beat as far as the ImageNet benchmark goes.
The message in ViT was that pure attention models without
extra regularization struggle in the small data (ImageNet)
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Model Backbone Resolution Top-1 Acc. Top-5 Acc. Params M.Adds Steptime

B0 EfficientNet 224 77.1 93.3 5.3M 0.39B 35.6
S0 SENet-50 160 77.0 93.5 28.02M 2.09B 32.3
B1 EfficientNet 240 79.1 94.4 7.8M 0.7B 58.8
- ResNet-50 224 78.3 94.3 25.5M 4.09B 50.7
- ResNet-50 256 78.8 94.5 25.5M 5.34B 62.1
- SENet-50 224 79.4 94.6 28.02M 4.09B 64.3
B2 EfficientNet 260 80.1 94.9 9.2M 1.0B 74.6
- ResNet-101 224 80.0 95.0 44.4M 7.8B 63.0
B3 EfficientNet 300 81.6 95.7 12M 1.8B 120.8
T3 BoTNet-S1-59 224 81.7 95.8 33.5M 7.3B 156.2
- ResNet-152 224 81.3 95.5 60.04M 11.5B 85.6
S1 SENet-101 224 81.4 95.7 49.2M 7.8B 71.1
S2 SENet-152 224 82.2 95.9 66.6M 11.5B 97.7
B4 EfficientNet 380 82.9 96.4 19M 4.2B 238.9
T4 BoTNet-S1-110 224 82.8 96.3 54.7M 10.9B 181.3
S3 SENet-152 288 83.1 96.4 66.6M 19.04B 149.9
B5 EfficientNet 456 83.6 96.7 30M 9.9B 442.6
S4 SENet-350 320 83.6 96.6 115.18M 52.9B 397.9
T5 BoTNet-S1-128 256 83.5 96.5 75.1M 19.3B 355.2
B6 EfficientNet 528 84.0 96.8 43M 19B 776.3
S5 SENet-350 384 83.8 96.6 115.18M 52.9B 397.9
T6 BoTNet-S1-77 320 84.0 96.7 53.9M 23.3B 578.1
B7 EfficientNet 600 84.3 97.0 66M 37B 1478.4
T7-320 BoTNet-S1-128 320 84.2 96.9 75.1M 30.9B 634.3
B7-RA EfficientNet 600 84.7 97.0 66M 37B 1478.4
T7 BoTNet-S1-128 384 84.7 97.0 75.1M 45.8B 804.5

Table 8: Various backbone architectures, evaluated under the fair setting of using the improved training elements from
EfficientNet [14]. Models are grouped by the accuracy of each EfficientNet model. For ResNets, SENets and BoTNets, the
best weight decay from [2e-5,4e-5,8e-5,1e-4] the best dropconnect from [0.2,None], and the best RandAugment
magnitude from [9,15,24] are used to ensure fair comparisons to the already well tuned EfficientNets whose results we
take from the latest update to the official codebase. The steptimes that we report, refer to the compute time on a TPU-v3 core,
for a batch size of 32 for all the models. This is to ensure we do not use different batch sizes for different models and do
not conflate TPU rematerialization for dense convolutions. Had we done so (i.e picked bigger batch sizes for ResNets and
BoTNets as long as they fit on memory), the speedup gains would be even higher. Further, by compute time, we just mean the
time spent for forward and backward passes, and not the data loading. This is again to ensure comparisons across models do
not exploit inefficient (or non-cached) data loading. B7-RA refers to EfficientNet-B7 trained with RandAugment [3].

regime1, but shine (achieve 85.1% and 88.6% fine-tuned top-
1 accuracy) in the large data regime (ImageNet-21k and JFT
dataset), where inductive biases such as data augmentation
and regularization tricks used in the EfficientNet training
setting are less important. Nevertheless, we think it is an in-
teresting exercise to explore hybrid models such as BoTNet
even in the large data regime simply because they seem to
scale much better than SENets and EfficientNets (Figure 5)
and achieve better performance than DeiT on ImageNet. We
leave such a large scale effort for future work.

It is unclear what the right model class is, given that we
have not yet explored the limits of hybrid models in the large
data regimes, and that the pure attention models currently lag

1ImageNet-1K may not be a small dataset by conventional standards,
but is referred to as such here for the contrast with JFT.

behind both convolutional and hybrid models in the small
data regime. Nevertheless, with the hope that the ImageNet-
1K benchmark has been representative of the best performing
models in the vision community, BoTNets are likely to be
a simple and compelling baseline to always consider. BoT-
Nets are very much similar to the Hybrid-ViT models (R50
+ ViT-B/16). The few minor differences have already been
highlighted in the main paper, as to how BoTNets use Bottle-
neck Transformer (BoT) blocks, which are different from the
regular Transformer blocks in ViT. These differences may
lead to different optimizers and hyperparameters for training
BoT and ViT models, e.g, SGD-momentum (BoT) vs. Adam
(ViT); BatchNorm (BoT) vs. LayerNorm (ViT), number of
non-linearities and residual connections, etc. One useful
aspect of BoTNets is that they can exploit the hyperparame-



Model Backbone Resolution WD RA DC DR

S0 SENet-50 160 8e-5 9 0.2 0.25
- ResNet-50 224 8e-5 9 - -
- ResNet-50 256 8e-5 9 - -
- SENet-50 224 4e-5 15 0.2 0.25
- ResNet-101 224 4e-5 15 0.2 0.25
T3 BoTNet-S1-59 224 4e-5 15 0.2 0.25
- ResNet-152 224 4e-5 15 0.2 0.25
S1 SENet-101 224 4e-5 15 0.2 0.25
S2 SENet-152 224 4e-5 15 0.2 0.25
T4 BoTNet-S1-110 224 4e-5 15 0.2 0.25
S3 SENet-152 288 4e-5 15 0.2 0.25
S4 SENet-350 320 4e-5 15 0.2 0.25
T5 BoTNet-S1-128 256 4e-5 15 0.2 0.25
S5 SENet-350 384 4e-5 15 0.2 0.25
T6 BoTNet-S1-77 320 4e-5 15 0.2 0.25
T7-320 BoTNet-S1-128 320 2e-5 24 0.2 0.25
T7 BoTNet-S1-128 384 2e-5 24 0.2 0.25

Table 9: Hyperparameters for ResNets, SENets and BoTNets trained for ImageNet-1K classification benchmark reported in
Table 8. Resolution, WD, RA, DC and DR refer to image size, weight-decay, randaugment magnitude (2 layers), dropconnect
probability and dropout ratio respectively. Our implementation of drop-connect and the balance between RA and WD is
similar to HaloNets [16]. Numbers reported for EfficientNet are just taken from the EfficientNet paper [14]. All models
additionally use label smoothing of 0.1 and trained for 350 epochs. All models are trained with global batch size 4096, trained
on TPU v3 hardware (v3-128), and no synchronized (cross-replica) batch-norm was used for training any of these models,
unlike EfficientNet. We expect results to improve marginally with the use of sync. batchnorm. Training uses bfloat16
precision and the throughput speeds reported also use bfloat16 precision. The evaluation for all models were run on TPU
v3-8 hardware with global batch size of 128 using bfloat16 precision. All models use SGD-momentum optimizer (without
Nesterov) with a momentum of 0.9. The base learning rate is 0.1 for a batch size of 256 as is standard, and is scaled to 1.6 for
a batch size of 4096, with linear warmup for 5 epochs, and cosine decay for rest of the training.

Backbone top-1 acc. top-5 acc.

SE50 79.2 94.6
BoT50 79.6 (+ 0.4) 94.6
BoT-S1-50 80.4 (+ 1.2) 95.0 (+ 0.4)

Table 10: ImageNet results in a further improved training
setting with SE blocks and SiLU non-linearity: 200 epochs,
batch size 4096, weight decay 4e-5, RandAugment (2 layers,
magnitude 10), and label smoothing of 0.1. R50 with SE
blocks is referred to as SE50.

ters that have been developed over many years for ResNets
(SGD, BatchNorm, etc), resulting in a straightforward adop-
tion in other vision tasks such as instance segmentation and
object detection. These are benchmarks that have not yet
seen widespread use of the Adam optimizer, LayerNorm
and Transformer layers, yet. An appealing aspect of hy-
brid models in BoTNets over ViT-hybrids is their parameter
and FLOPs efficiency. The ViT paper has not explicitly op-
timized for the design of hybrids. So, we believe strong
conclusions cannot be drawn yet, and a careful empirical
study of their differences is left for future work.

Our paper does not touch upon comparisons to backbones

that employ group convolutions [20, 10], concurrent work on
channel (or linear) attention in c4 [1], axial attention [18, 13]
and local attention [11], but we remark that changes prior
to the c5 blockgroup can benefit BoTNets as well. We also
leave it to future research to carefully compare alternatives
to self-attention such as lambda-layers [1]. We speculate
that employing local attention in earlier blockgroups such as
c2,c3,c4 with the SASA [11] layers could lead to more
efficient pure attention models in future. Our paper is a
contribution in terms of identifying connections between
ResNet MHSA blocks, Transformer blocks, and Non-Local
blocks; and showing the power of simple hybrids, to achieve
SoTA-competitive backbone architecture performance on
both COCO and ImageNet-1K benchmarks.
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