This document contains additional implementation details
for our method, as well as additional qualitative results from
the experiments discussed in the main paper. Please view
our included supplementary video for a brief overview of
our method, qualitative results with smoothly-moving novel
light and camera paths, and demonstrations of additional
graphics applications.

A. BRDF Parameterization

We use the standard microfacet bi-directional reflectance
distribution function (BRDF) described by Walter et al. [55]
as our reflectance function, and incorporate some of the
simplifications discussed in the BRDF implementations of
the Filament [15] and Unreal Engine [20] renderering en-
gines. The BRDF R(x,w;,w,) we use is defined for any
3D location x, incoming lighting direction w;, and outgoing
reflection direction w,, as:
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where a is the diffuse albedo, v is the roughness, and n
is the surface normal at 3D point x. We use Fy = 0.04,
which is the typical value of dielectric (non-conducting)
materials. Note that our definition of the BRDF includes the
multiplication by the Lambert cosine term (n - w;) in order
to simplify the equations in the main paper.

B. Additional Qualitative Results

Figure 10 shows additional renderings from NeRV and
other baseline methods. We see that NeRV is able to recover
effective relightable 3D scene representations from images
of scenes with complex illumination conditions. Prior work
such as Bi et al. [3] are unable to recover accurate represen-
tations from images with lighting conditions more complex
than a single point light. Latent code methods (representative
of “NeRF in the Wild” [28]) are unable to generalize to sim-
ulate lighting conditions unlike those seen during training.
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Figure 9: Additional qualitative results, specifically comparing
images rendered by NeRV to those rendered by the Neural Light
Transport [61] (NLT) baseline. Note that NLT uses a controlled lab-
oratory lighting setup with eight times as many images as used by
NeRYV, and an input proxy geometry (which is recovered by training
a NeRF [32] model on a set of images with fixed illumination). The
artifacts seen in the shadows of NLT’s renderings demonstrate the
difference between recovering geometry that works well for view
synthesis (as NLT does) and recovering geometry that works well
for both view synthesis and relighting (as NeRV does).
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C. Limitations

Recovering a NeRV is a straightforward optimization
problem: we optimize the parameters of the MLPs that com-
prise a NeRV scene representation to minimize the error
of re-rendering the input images. NeRV currently does not
incorporate any priors into the optimization problem, so a
promising direction for future work would be to integrate
priors on geometry and reflectance (such as learned priors or
simple hand-crafted priors to encourage smooth geometry or
reflectance predictions) into the NeRV optimization so that a
relightable 3D scene representation could be recovered from
fewer viewpoints or fewer observed lighting conditions.

Successfully recovering a NeRV representation relies on
jointly optimizing the geometry, reflectance, and visibility
MLPs. We have noticed failure cases where the reflectance
MLP seems to converge faster than the geometry and visi-
bility MLPs and is stuck in a local minimum. For example,
in cases where the scene is observed under very few illumi-
nation conditions, the reflectance MLP sometimes quickly
converges to include shadows and light tints in the recovered
albedo, and is not able to recover even after the visibility
MLP catches up to correctly explain those shadows. Further
investigations into the optimization landscape and dynamics
of NeRV could help shed light on this issue.

Finally, the NeRV optimization problem trains a geometry
MLP along with a visibility MLP that is meant to approxi-
mate integrals of the geometry MLP’s output. Though we
impose a loss that encourages these two MLPs to be con-
sistent with each other, there is no guarantee that these two
MLPs will be exactly consistent. Investigating potential
strategies to enforce such consistency may be helpful.
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Figure 10: Additional qualitative results from the experiments discussed in the main paper. We can see that NeRV is able to render convincing
images from novel viewpoints under novel lighting conditions. The method of Bi ef al. [3] is unable to recover accurate models when trained
with illumination more complex than a single point light (columns 3-6). Methods that use latent codes to explain variation in appearance due
to lighting (NeRF+LE, NeRF+Env) are unable to generalize to lighting conditions different than those seen during training.



