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Technical Appendix

1 CLEVR-Hans data set
For CLEVR-Hans classes for which class rules contain more than three objects, the number of objects to be placed per scene
was randomly chosen between the minimal required number of objects for that class and ten, rather than between three and ten,
as in the original CLEVR data set.

Each class is represented by 3000 training images, 750 validation images, and 750 test images. The training, validation,
and test set splits contain 9000, 2250, and 2250 samples, respectively, for CLEVR-Hans3 and 21000, 5250, and 5250 samples
for CLEVR-Hans7. The class distribution is balanced for all data splits.

CLEVR-Hans7 The first, second, and seventh class rules of CLEVR-Hans7 correspond to classes one, two, and three of
CLEVR-Hans3. Images of the third class of CLEVR-Hans7 contain a small cyan object in front of two red objects. The cyan
object is a small cube in all images of the training and validation set, yet it can be any shape and size within the test set. Images
of the fourth class contain at least five small objects. One of these must be green, one brown, and one purple. There are no
constraints on the remaining small objects. This class is not confounded. Images of class five consist of two rules. There are
three spheres present in the left half of the image (class rule 5a), or there are three spheres present in the left half of the image
and three metal cylinders in the right half of the image (class rule 5b). Within all data splits, including the test split, class rule
5a occurs 90% of the time and class rule 5b 10% of the time. The class rule of the sixth class is contained in class rule 5b,
namely three metal cylinders in the right half of the image. This is the same for all splits.

Preprocessing Details We downscaled the CLEVR-Hans images to visual dimensions 128 x 128 and normalized the images
to lie between -1 and 1. For training the Slot-Attention module, an object is represented as a vector of binary values for the
shape, size, color, and material attributes and continuous values between 0 and 1 for the x, y, and z positions. We refer to [5]
for more details.

2 ColorMNIST Experiment
The model used for the ColorMNIST data set is described in Tab 1.

This model was trained with an initial learning rate of 1.0 for 14 epochs with a batch size of 64 using a step learning rate
scheduler with step size 1 and γ = 0.7 and Adadelta [8] as optimizer.

Type Size/Channels Activation Comment
Conv 3 x 3 32 ReLu stride 1
Conv 3 x 3 64 ReLu stride 1

AdaptiveAvgPool (2D) 14× 14 - -
Dropout - - p = 0.25
Flatten - - dim = 1
Linear 128 - -

Dropout - - p = 0.5
Linear 10 - -

Table 1: CNN used for ColorMNIST experiments.



Figure 1: CLEVR-Hans7 data set overview. Please refer to the main text for a more detailed description of the data set.



Type Dim Out Numb. Heads Comment
SAB 128 4 -
SAB 128 4 -

Dropout - - p = 0.5
PMA 128 4 -

Dropout - - p = 0.5
Linear 3/7 - -

Table 2: Set Transformer architecture used for reasoning module. Depending on whether CLEVR-Hans3 or CLEVR-Hans7
was used the final output varied between 3 and 7.

3 Experiment and Model Details
Cross-validation We ran all experiments with five random parameter initializations and reported the mean classification
accuracy with standard deviation over these runs. We used the seeds: 0, 1, 2, 3, 4. The accuracies we presented are from those
models of each run with the lowest validation loss.

Reasoning Module For our reasoning module, we used the recently proposed Set Transformer, an attention-based neural
network designed to handle unordered sets. Our implementation consists of two stacked Set Attention Blocks (SAB) as encoder
and a Pooling by Multihead Attention (PMA) decoder. Architecture details can be found in Tab 2

Concept Embedding Module For our concept embedding module, we used the set prediction architecture of Locatello et
al. [5] that the authors had used for the experiments on the original CLEVR data set. We refer to their paper for architecture
parameters and details rather than duplicating these here.

We pre-trained this set prediction architecture on the original CLEVR data set with a cosine annealing learning rate sched-
uler for 2000 epochs, minimum learning rate 1e−5, initial learning rate 4e−4, batch size 512, 10 slots, 3 internal slot-attention
iterations and the Adam optimizer [3] with β1 = 0.9 and β2 = 0.999, ε = 1e− 08 and zero weight decay.

Neuro-Symbolic Concept Learner To summarize, we thus have the two modules, as stated above. For our experiments, we
passed an image through the pre-trained concept embedding module. For simplicity, we binarized the output of the concept
embedding module for the attributes shape, size, and color, before passing it to the reasoning module by computing the argmax
of each attribute group. This way, each object is represented by a one-hot encoding of each of these attributes.

The architecture parameters of the concept embedding and reasoning module were as stated above, and the same for both
training settings, i.e., default and XIL.

In the default training setting, using the cross-entropy classification loss, we used the Adam optimizer (β1 = 0.9 and
β2 = 0.999, ε = 1e − 08 and zero weight decay) in combination with a cosine annealing learning rate scheduler with initial
learning rate 1e− 4, minimal learning rate 1e− 6, 50 epochs and batch size of 128.

For training our concept learner using the HINT [7] loss term on the symbolic explanations in addition to cross entropy
term we used the Adam optimizer (β1 = 0.9 and β2 = 0.999, ε = 1e−08 and zero weight decay) in combination with a cosine
annealing learning rate scheduler with initial learning rate 1e − 3, minimal learning rate 1e − 6, 50 epochs and batch size of
128. We used λs = 1000 for the XIL experiments on CLEVR-Hans3 and λs = 10 for the XIL experiments on CLEVR-Hans7.
For the global rule experiments, using the RRR term of Ross et al. [6], we set λs = 20 with all other hyperparameters the same
as previously.

CNN Model Details Our CNN model is based on the popular ResNet34 model of [1]. The visual explanations generated
by Grad-CAM are in the visual dimensions of the hidden feature maps. As these dimensions of the ResNet34 model were
very coarse given our data pre-processing, we decreased the number of layers of the ResNet34 model by removing the last six
convolutional layers (i.e., fourth of the four ResNet blocks) and adjusting the final linear layer accordingly.

For training the CNN in default cross-entropy mode, we used a constant learning rate of 1e− 4 for 100 epochs and a batch
size of 64. We used the Adam optimizer with β1 = 0.9 and β2 = 0.999, ε = 1e − 08 and zero weight decay. For training the
CNN with an additional HINT explanation regularization, we used the same training parameters, as in the default case, and a
λv = 10. These parameters were the same for CLEVR-Hans3 and CLEVR-Hans7.

4 Explanation Loss Terms
For our experiments, we used two different types of explanation loss terms (Eq. 4). For all experiments, apart from those with
a single global rule, we simulated the user feedback as positive feedback. In other words, the user feedback indicated what



Model Global Test
Average Class 1 Class 2 Class 3

NeSy (Default) 4.99± 0.16 6.57± 0.95 4.58± 0.68 3.81± 0.34

NeSy XIL 1.37± 0.2 2.37± 0.62 1.09± 0.08 0.68± 0.1

True Positive Rate
NeSy (Default) 2.56± 0.05 2.97± 0.27 2.13± 0.23 2.57± 0.2

NeSy XIL 0.85± 0.09 1.26± 0.31 0.77± 0.06 0.52± 0.12

Table 3: L1 error between symbolic user feedback (i.e. ground-truth (GT) symbolic explanations) and the respective
model’s symbolic explanations for CLEVR-Hans3. Presented are the average L1 error over all samples of the test set and the
average L1 error separately over all samples of individual classes. Note: a lower value is preferable. The best (lowest) errors
are in bold. The first two rows present the L1 error over all classification errors. The bottom two rows present the error by
comparing only for relevant GT elements (i.e. have a value of one).

Model Global Test
Average Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7

NeSy (Default) 7.26± 0.32 6.14± 0.65 7.61± 0.66 6.64± 0.33 6.93± 1.83 10.1± 0.45 7.66± 0.73 5.77± 0.51

NeSy XIL 3.35± 0.13 2.28± 0.09 2.86± 0.08 4.72± 0.72 1.88± 0.27 7.19± 0.45 2.90± 0.24 1.59± 0.09

True Positive Rate
NeSy (Default) 4.55± 0.12 3.35± 0.27 4.12± 0.26 4.41± 0.16 3.13± 0.55 7.6± 0.08 5.57± 0.38 3.65± 0.22

NeSy XIL 2.43± 0.12 1.38± 0.04 1.87± 0.11 3.22± 0.51 1.48± 0.26 6.03± 0.5 2.00± 0.28 1.04± 0.06

Table 4: L1 error between symbolic user feedback (i.e. ground-truth (GT) symbolic explanations) and the respective
model’s symbolic explanations for CLEVR-Hans7. Presented are the average L1 error over all samples of the test set and the
average L1 error separately over all samples of individual classes. Note: a lower value is preferable. The best (lowest) errors
are in bold. The first two rows present the L1 error over all classification errors. The bottom two rows present the error by
comparing only for relevant GT elements (i.e. have a value of one).

features the model should be focusing on. For simplicity in our experiments, we simulated the user to have full knowledge of the
task and give the fully correct rules or visual regions as feedback. For this positive feedback, we applied a simple mean-squared
error between the model explanations and user feedback as an explanation loss term:

L(θ, X, y, A) = λ1
1

N

N∑
i=1

D∑
d=1

(Aid − êgid)
2 (1)

This was applied to the XIL experiments with the standard CNN model, for which the explanations were in the form of
Grad-CAMs, and for revising the Neuro-Symbolic model. In the case of revising the CNNs, the user annotation masks were
downscaled to match the Grad-CAM size resulting from the last hidden layer of the CNN.

For handling the negative feedback of the experiments with the single global rule, in which the user indicated which features
are not relevant, rather than which are, we reverted to the RRR term of Ross et al. [6]:
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5 Quantitative Analysis of Improved Symbolic Explanations
To more quantitatively assess the improvements of the symbolic explanations of our NeSy model using XIL we measured the
absolute difference (L1 error) for each sample between the ground-truth (GT) explanations and the symbolic explanations of the
NeSy Default trained with cross-entropy and NeSy XIL, respectively. Specifically, we computed the difference for an individual
sample in the following. Given the GT explanation eGT

i ∈ [0, 1]D and symbolic explanation of the model êgi ∈ [0, 1]D of
sample i we computed the L1 error as:

∑D
j |eGT

ij − ê
g
ij |. We finally averaged the error over all samples of the test set, as well

as all samples of a specific sample class, separately.
Due to that within eGT

i only few attributes are marked as relevant (i.e. have a value of one) we measured the absolute L1
error here over all possible classification errors, i.e. true positives, true negatives, false positives and false negatives. The results
can be found in the top two rows of Tab. 3 and Tab. 4 for CLEVR-Hans3 and CLEVR-Hans7, respectively. Note here that a
lower error corresponds to a stronger correspondence between the GT explanation and model explanation.

Additionally we computed the absolute L1 error only over the relevant GT attributes, yielding the true positive rate. The
results can be found in the bottom two rows Tab. 3 and Tab. 4 for CLEVR-Hans3 and CLEVR-Hans7, respectively. One can
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Figure 2: Confusion matrices of the different models and training settings for the test set of CLEVR-Hans3. Note: label
0 corresponds to class 1, etc..

observe that in fact with XIL the symbolic model explanations more strongly correspond to the GT explanations, thus further
supporting the results indicated by the balanced accuracies for validation and test sets of the main text as well as the qualitative
results of the main text and supplementary materials that using XIL on the symbolic explanations the model explanations could
be improved to more strongly correspond to the underlying GT symbolic explanations.

For CLEVR-Hans7 NeSy XIL resulted in a reduction in relative L1 error compared to NeSy (Default) of: 54% (total), 63%
(class 1), 62% (class 2), 29% (class 3), 73% (class 4), 29% (class 5), 62% (class 6) and 72% (class 7).

One particularly interesting result to take from Tab. 4 is the difficulty of improving the symbolic explanations for those
classes of CLEVR-Hans7 which require counting the occurrences of specific attribute combinations, i.e. classes 3 and 5 (see
Fig. 1 for an overview of the class rules). The improvement in L1 error for NeSy XIL is not as strong for class 3 and class 5 as
for the other classes. We believe this to indicate a shortcoming in the counting ability of the Set Transformer module.

6 Detailed Analysis of Confusion Matrices
Fig. 2 presents the confusion matrix for the all model and training settings on the test set of CLEVR-Hans3. Note the default
CNN’s difficulty especially with the color confounder of class one rather than the material confounder of class two.

Fig. 3 presents the confusion matrix for the all model and training settings on the test set of CLEVR-Hans7. Quite surpris-
ingly, in comparison to Fig. 2 one can see that within the classes also present in CLEVR-Hans3 all models reach a higher class
accuracy than when trained with CLEVR-Hans3. We suggest this is caused by the nonexclusive nature of the CLEVR-Hans
data generation. As an example: though a large gray cube and large cylinder will never appear in combination in any other
image than of class 1, each object separately may appear in images of other classes. Thus with more images available in which
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Figure 3: Confusion matrices of the different models and training settings for the test set of CLEVR-Hans3. Note: label
0 corresponds to class 1, etc..
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Figure 4: Additional explanations of the various model types for test samples. Green checks represent correct class predictions,
red crosses incorrect predictions.

an individual large gray cube may appear, the confounding factor, the color gray, may not carry as much weight as with fewer
classes and images. Thus the generalizability to the test set is from the start easier to accomplish with CLEVR-Hans7.

7 Additional Explanation Visualizations
Fig. 4 shows additional qualitative results of NeSy XIL in addition to those of the main text. The top left example (a) presents
another example where only via interacting with Neuro-Symbolic explanations can get the correct prediction for the correct
reason. Top right (b) shows an example where all model configurations make the correct prediction. However, it does not
become clear whether the CNN is indeed focusing on both relevant objects. With the NeSy model, this becomes clearer, though
only using NeSy XIL are the correct objects and attributes identified as relevant for prediction. A similar case can be found in
the middle left (c), where NeSy XIL aids in focusing on both relevant objects. The middle right shows a case where already
NeSy shows advantages for creating correct predictions, yet not entirely for the correct concept. The bottom example (e)
exemplifies that solely from a visual explanation, it does not become clear that the model is focusing on the color confounder,
gray.

8 Further Concluding Remarks
The presented CLEVR-Hans benchmarks are challenging data sets due to the complex logic concepts that underlie the visual
scenes, we also strive towards an evaluation on real world data sets. Since, Koh et al. [4] and Kim et al. [2] show that the
performance of concept based models on real world data sets are en par with popular black-box models —however, don’t



investigate revising these models— we expect good results here as well.
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