Supplementary materials for Using Shape to Categorize: Low-Shot Learning
with an Explicit Shape Bias—Appendix

Stefan Stojanov, Anh Thai, James M. Rehg
Georgia Institute of Technology
{sstojanov, athai6, rehg}QRgatech.edu

This supplementary material document is structured as
follows: In Section 1 we provide further detail about the
training data used in the paper; In section 3 we provide de-
tails on the baselines used in the paper, their implementation
details and the hyperparameters used for training; In Sec-
tion 4 we provide empirical evidence about our choice of
point-cloud encoding architecture; In Section 5 we provide
further details about the training procedure of the shape-
biased image embeddings used in the paper.

1. Further Dataset Details

In this section we provide details on the composition of
the datasets used in the main paper. We provide example
images used to illustrate the data used for training in Fig-
ure 1. As a result of using a ray tracing-based renderer
Cycles [1 1], the synthetic image data used for training has
high realism. For all algorithms we use 224 x 224 RGB
images as input. For point cloud-based learning we use the
3D (z,y, z) coordinates 1024 randomly sampled points as
input. For images we use standard geometric data augmen-
tations e.g. flipping, cropping, slight translation and rota-
tion, as well as color jittering, since we found these result in
improved validation performance. For point clouds we use
the same augmentation procedures as in [| 8], which include
translation, jittering and dropout.

1.1. Toys4K

We provide further details on the composition of our new
Toys4K dataset in Table 1. The 40 train, 10 validation, and
55 test classes split is shown in Table 5. When perform-
ing validation and testing on Toys4K, we generate low-shot
episodes consisting of up to 5 shots and 10 queries.

1.2. ModelNet40-LS

The 20 train, 10 validation, 10 test classes split for
ModelNet40-LS is shown in Table 4. When performing
validation and testing on ModelNet40-LS, we generate low-
shot episodes consisting of up to 5 shots and 15 queries.

1.3. ShapeNet55-LS

The 25 train, 10 validation, 20 test classes split for
ShapeNet55-LS is shown in Table 3. When performing vali-
dation and testing on ShapeNet55-LS, we generate low-shot
episodes consisting of up to 5 shots and 15 queries.

2. Further Low-Shot Analysis

In this section we provide further analysis of the low-shot
performance by presenting confusion matrices and classifi-
cation performance in individual low-shot episodes.

2.1. Confusion Matrices

Please refer to Figure 2 and Figure 3 for low-shot confu-
sion matrices on ModelNet40-LS and ShapeNet55-LS. The
confusion matrices are obtained by evaluation 5K low-shot
episodes for each dataset (10-way for ModelNet40-LS and
20-way for ShapeNet55-LS), and counting how each sam-
ple was classified. The confusion matrices reflect the results
presented in Section 4 in the main text that adding shape
bias improves overall low-shot classification performance.

2.2. Per-episode Analysis

We provide a per-episode analysis of low-shot classi-
fication in Figure 4 to show qualitative evidence of low-
shot learning with shape bias. We see that there are cases
in which even though there are no view ambiguities, the
image-only model misclassifies whereas the shape-biased
model correctly classifies (e.g. in the lower left episode,
confusing bicycle for sheep).

3. Baseline Algorithm Details

All algorithms in this paper are implemented using Py-
Torch [9]. In this section we provide further detail about
the baseline implementations and hyperparameters used for
training.

ShapeNet Rendered Image Samples

ModelNet Rendered Image Samples

Toys4K Rendered Image Samples

. i
aTn[ea] [~ 7]+~ S]] s
chair car sofa
[(== o] 5] 8] 4] %
airplane sofa robot

) 2 _
= L= i L‘—.O g q - e gs /'/

lamp

helicopter

IEF
AN

-
TT

T

bookshelf

vase

hammer

Figure 1. Rendered image samples from multiple categories of ShapeNet, ModelNet and Toys4K. Note the high image quality as a result

of using ray-tracing based rendering.

piano 39 | shark 30 | panda 24 | submarine 18
boat 38 | stove 29 | orange 24 | helmet 17
bread 38 | bowl 28 | mushroom 23 | bicycle 16
fish 37 | car 28 | phone 23 | lion 16
horse 36 | cookie 28 | train 22 | motorcycle 16
spade 36 | cupcake 28 | tv 21 | hamburger 16
banana 35 | bunny 27 | toaster 21 | grapes 16
airplane 35 | drum 26 | helicopter 20 | tractor 16
donut 34 | pizza 26 | lizard 20 | monkey 16
truck 34 | mouse 25 | saw 19 | pc mouse 15
coin 33 | chicken 25 | marker 19 | light bulb 15
snake 32 | sink 25 | microwave 18 | closet 15
fridge 32 | cow 25 | bus 18 | fries 15
octopus 31 | dolphin 25 | pear 18 | sandwich 15
fan 31 | violin 25 | butterfly 18 | giraffe 15

Table 1. The category composition of the Toys4K dataset.

chair 210 | tree 57 | knife 45
bottle 111 | candy 56 | trashcan 44
robot 105 | guitar 55 | ball 44
dog 103 | apple 54 | frog 43
mug 97 | flower 54 | icecream 43
hammer 94 | ladder 53 | dragon 43
cat 79 | penguin 51 | pan 42
dinosaur 76 | keyboard 51 | battery cell 41
deer/moose 65 | pencil 50 | whale 41
fox 64 | plate 50 | shoe 40
hat 64 | key 49 | laptop 40
sofa 63 | chess piece 49 | pig 40
glass 63 | cake 48 | sheep 39
cup 60 | screwdriver 46 | crab 38
monitor 57 | elephant 46 | radio 38
3.1. SimpleShot

The implementation in our codebase for SimpleShot [16]
is based on the code release by the authors in [1]. The au-
thors report a 1-shot 5-way accuracy of 49.69(0.19) and a 5-
shot 5-way accuracy of 66.92(0.17) on minilmageNet [15]
with the Conv4 architecture. The reimplementation of Sim-
pleShot in our codebase with the same dataset and architec-
ture results in 1-shot 5-way accuracy of 50.60(0.34) and a
5-shot 5-way accuracy of 68.06(0.23).

In all our experiments we train SimpleShot with SGD
with an initial learning rate of 0.01 and a learning rate de-
cay of 0.1 at epochs 300 and 360, out of a total of 400
epochs. SimpleShot employs three different feature normal-
ization strategies, no normalization, L, normalization and
L5 normalization and training set mean subtraction. In ex-

periments with SimpleShot we report the result of the best
of these three normalization strategies.

3.2. RFS

The implementation in our codebase for RFS [14] is
based on the code release by the authors in [2]. The original
codebase obtains a 1-shot 5-way accuracy of 53.73(0.81)
on minilmageNet [15] with the Conv4 architecture. The
reimplementation of RFS in our codebase with the same
dataset and architecture results in 1-shot 5-way accuracy of
54.59(0.86). RFS requires training an embedding on the
training dataset using cross-entropy. We train this embed-
ding space with SGD using a learning rate of 0.001, mo-
mentum of 0.9 and Lo weight penalty weight parameter of
0.0005. For each low-shot episode we train a logistic re-

gression classifier using Scikit-learn[
RFS.

3.3. FEAT

], as in the original

The implementation for FEAT is based on the code re-
lease by the authors in [3]. The original codebase obtains
a l-shot 5-way accuracy of 54.85(0.20) and 5-shot 5-way
accuracy of 71.61 on minilmageNet [!5] with the Conv4
architecture. The reimplementation of FEAT in our code-
base with the same dataset and architecture results in 1-shot
5-way accuracy of 54.85(0.20) 5-shot 5-way accuracy of
71.45(0.73). We train FEAT with the default hyperparame-
ters recommended by the authors, training separate models
for 5-way and 10-way classification, and separate models
for 1-shot and 5-shot, as recommended by the authors. For
the shape biased FEAT we do not use learning rate schedul-
ing and momentum, since they have a negative effect on
performance for shape-biased training. Removing them for
image-only training does not affect performance.

3.4. Protoypical Networks

The implementation in our codebase for Prototypical
Networks is based on the code release by the SimpleShot
authors in [1]. In [6] the authors report that their reimple-
mentation obtains a 5-shot 5-way accuracy of 66.68(0.68)
on minilmageNet [15] with the Conv4 architecture. The
reimplementation of Prototypical Networks in our code-
base with the same dataset and architecture results in 5-
shot 5-way accuracy of 66.94(0.71). We train separate Pro-
totypical Networks models for 5-shot classification and 1-
shot classification. As recommended by the authors of the
original paper, we perform 20-way training. We use the
Adam [8] optimizer, 400 low-shot iterations per epoch, 200
epochs total, and a learning rate of 0.0001 Lo and weight
penalty weight parameter of 0.00001. We perform a learn-
ing rate decay of 0.5 every 20 epochs.

3.5. Triplet Model

We implement a joint triplet model using both point
cloud (DGCNN [17] and image (ResNetl8 [7]) encoders,
which can use both image and shape information during
training. Let f; denote the image encoder, f, denote the
point cloud encoder, and qﬁ’; and ¢¥ denote the point cloud
and image encodings of object instance k respectively. We
learn a joint image/shape embedding by minimizing a stan-
dard triplet loss

L(¢F, ¢k, L) = max {d(¢F, ¢%) — d(¢f, 4.) + margin, 0}
d(z,y) = ||z — yl|2

where the anchor is an image embedding of instance k, ¢F,
the positive sample is a point cloud encoding of the same

object instance, ¢¥, and the negative sample is a gb]lg is a

point cloud embedding of a different object instance {. We
perform Lo normalization of the embeddings prior to com-
puting the loss. Note that it is possible to build (anchor,
positive, negative) pairs using category information, but we
empirically found that this leads to worse performance.

We train the triplet model using the Adam [8] optimizer
with a learning rate of 0.0001, Ly, weight penalty weight
parameter of 0.0001, and margin of 0.1. We use a batch
size of 72 and train for 600 epochs, each epoch consisting
of 20K random samples.

4. Learning a Point Cloud Shape Embedding

In this section we describe the algorithm for learning a
point-cloud based embedding space, and present an empiri-
cal study for our point cloud architecture choice.

4.1. Algorithm

The algorithm we use to train a point-cloud embedding
space is based on SimpleShot [16] and is described with
pseudocode in Algorithm 1. Note that the routine AccAccu-
mulator is used denotes a function to collect the validation
accuracy of each low-shot episode and compute summary
statistics. The NNCLASSIFY routine takes support features
and labels, and classifies each test query feature based on
a nearest neighbors rule using cosine similarity. The point-
cloud embedding model is trained using SGD with a learn-
ing rate of 0.01, batch size of 129, and L, weight penalty
weight parameter of 0.0001. We perform learning rate de-
cay by 0.1 at epochs 300 and 360. In all models we use
features from the output of the pooling layer in the architec-
ture.

4.2. Architecture Study

We perform an empirical study on the point cloud archi-
tectures to determine which is capable of the best low-shot
generalization performance. Our PointNet [12] implemen-
tation is based on [4], our PointNet++ [13] is based on [18]
and our DGCNN [17] implementation is based on [5]. We
use a DGCNN architecture with a reduced embedding di-
mension (size after the pooling operation) of 512 rather
than the original 1024, to match the dimensionality of the
ResNet18 embeddings. We find no decrease in performance
by this reduction. We present the results of this study on
ModelNet in Table 2. The DGCNN [17] architecture out-
performs other point cloud architectures at low-shot gener-
alization to novel categories. We find that randomly rotating
the input point cloud about the origin during training (ran-
dom rotation about all axes of rotation, indicated by SO3
in the table) results in a performance improvement. We use
this SO3 strategy for all shape-embedding space learning
experiments.

ModelNet - Confusion matrix - Image Only

ModelNet - Confusion matrix - Shape Bias (w/o pc)

ModelNet - Confusion matrix - Shape Bias (w/ pc)

bench 001 004 003 005 006 011 014 005 008 bench 000 002 003 003 007 008 011 004 006 bench 000 001 002 002 004 010 013 002 005
bowl { 0.00 006 000 002 001 003 001 003 002 bowi { 000 002 002 005 001 006 001 001 006 bowl { 0-00 001 001 004 001 007 001 000 007
Jamp { 002 012 001 003 004 004 005 018 003 lamp { 005 002 000 003 006 004 011 020 003 lamp { 006 0.02 H 000 002 005 005 017 018 002
laptop { 001 000 000 JWEEN 006 003 004 002 000 008 laptop { 001 0.00 0.00 003 005 004 003 000 006 laptop { 000 0.00 000 - 002 003 003 001 000 004
g radio { 005 004 005 017 022 010 012 007 001 017 % radio { 003 001 002 008 029 016 015 007 001 017 % radio { 003 001 001 004 027 016 019 009 000 019
E range_hood 004 001 005 010 008 . 008 005 002 011 E range_hood 002 000 001 012 007 H 009 004 000 009 E range_hood 003 000 001 011 005 . 012 005 000 008
sink { 008 006 006 011 011 010 023 007 006 013 sink 1 006 002 001 011 014 016 026 008 003 014 sink { 006 002 001 006 012 017 030 010 002 015
stairs {012 002 008 007 007 005 007 0.07 stairs 1 13 000 006 010 005 010 010 033 006 006 stairs 1 013 000 006 007 003 008 014 040 004 005
stool { 004 007 024 002 001 002 006 006 . 0.02 stool { 007 001 021 001 001 005 005 009 . 0.01 stool { 008 001 021 001 001 004 005 011 . 0.01
tent { 005 005 004 021 014 010 012 005 001 022 tent { 004 003 001 017 017 016 015 005 000 022 tent { 003 002 001 014 015 014 019 006 000 026
& & & fec R & & & && ;"& S 0 0 & & & @?"eb R
<§9 ’ @oQ @&

Predicted label

Figure 2.

Predicted label Predicted label

Confusion matrices over 5K low-shot episodes of SimpleShot for Image Only, Shape-Biased without access to point clouds (w/o

pe) at test time and Shape-Biased with (w/ pc) access to point clouds at test time on the ModelNet-LS dataset. Even without access to
point clouds (w/o pc) for building class prototypes, the shape-biased image embedding leads to improvements. Adding point cloud support
information (w/ pc) improves performance further. See Table 3 in the main text for aggregate results.

ShapeNet - Confusion matrix - Image Only ShapeNiet - Confusion matix - Shape Bias (w/o pc) ShapeNet - Confusion matrix - Shape Bias (w/ pc)
wvean JIN 50 05 05 503wz 5% 0 o0 [053 001 000 567 051 000 500 500 [3% [O3 913 501 01 01 000 008 02 000 [08] 00 000 000 02 501 08 900 000 G| e B 007 9T G G 001 00 06 02 000G 01 00 0 007 o a0 a8 28 00

1og {002 (0251 004 005 001 007 008 005 003 002 007 005 002 001 003 005 001 002 003 004 vog {003 [328] 004 005 000 009 003 007 003 001 002 00 001 001 010 007 000 001 002 006 1og {002 [838] 004 005 000 010 002 007 002 001 002 007 001 000 010 005 000 000 001 006

smsket {012 005 015 003 006 003 001 005 002 000 011 005 005 000 007 000 001 002 001 009 tosket {014 003 016 007 005 003 000 006 001 001 011 004 003 000 011 000 00D 001 00 012 pmsket {011 004 015 007 004 003 000 005 001 001 014 004 002 000 013 000 000 002 000 012

e [002 006 006 [30] 000 003 001 005 003 001 001 027 004 001 010 000 002 002 003 003 e |002 003 006 [31] 000 005 000 005 002 001 000 (038 004 001 014 000 001 002 002 004 sea [001 003 006 [334] 000 004 000 005 001 001 000 (020 002 000 014 000 001 002 002 002

camera {002 005 002 002 001 018 014 002 005 00 007 005 002 005 009 002 062 003 003 003 camera {003 007 004 007 001 013 003 005 005 005 005 00 001 003 013 003 000 001 003 004 amera |002 009 003 007 001 023 003 004 004 005 004 00B 001 003 013 002 00D 001 003 008

fie |003 005 004 006 000 002 000 [G3] 003 001 001 006 001 000 006 003 000 000 01 07 fie|005 004 004 006 000 003 000 [027] 003 001 001 005 000 000 006 004 000 000 001 [dZ8 5ie [005 005 004 004 000 004 000 (025 003 002 000 007 000 000 005 004 000 000 000 029

mailbox {003 003 001 003 000 006 011 004 [33] 001 003 005 001 011 003 004 001 002 001 003 meiibox {004 002 002 003 000 005 003 007.003 001 005 000 016 003 004 001 001 001 005 mailbox {003 003 001 003 000 006 003 006 [338) 003 001 004 000 020 003 003 000 000 001 004

5 motoryce {000 000 000 000 000 002 001 000 001 [EEEN 000 000 000 006 000 000 004 003 004 000| F morcycie 000 000 000 001 000 0cs 001 000 001 [BE 000 001 000 003 000 000 002 002 007 000| F motoreyce |00 000 000 001 000 002 001 000 oon [0co 000 000 005 000 000 002 001 005 000
% g 012 063 0oe 0w 007 00s 008 001 001 ooo [oo1 ao1 000 002 001 000 000 000 0G3| § g [d36) 001 008 000 003 003 001 001 001 000 [aco 0G0 000 002 000 000 000 000 62| ¥ g 039 00z 08 000 003 003 001 0ot 000 ooo Y 000 aco 000 001 000 0G0 000 0G0 0z
sano {002 004 004 015 000 006 001 005 006 00 001 023 004 003 008 001 003 006 003 004 ano {001 003 004 [020] 000 005 000 005 003 001 000 [0ZB] 003 001 003 001 002 007 008 003 sano {001 005 003 018 000 005 000 005 001 001 000 [338] 002 000 009 000 001 003 003 002

silow {000 002 003 008 014 003 000 001 0G1 001 002 003 00 003 000 007 006 0a2 001 slow {000 002 004 008 007 002 000 001 000 000 oo1 004 Y 000 010 001 00s 003 002 001 silow {000 002 005 009 005 003 000 001 000 000 0oy 004 [l 000 011 000 003 007 002 000

et 000 000 000 000 000 002 001 000 005 005 000 001 a0 003 007 003 000 e [000 000 000 000 000 002 000 000 005 005 000 001 000 [BE 000 002 010 003 0as 0uo it {108 000 000 010 a0 051 09 00 053 o asn 0o oo [o0 a2 o 0oz aos o

iner {001 007 004 008 001 009 002 005 002 001 004 007 008 001 022] 000 002 002 002 011 iter {002 005 009 013 000 007 000 007 001 000 001 007 00s 000 [027] 000 000 0a1 002 013 iner {001 006 008 012 000 009 000 00 001 000 000 008 004 000 [030] 000 000 001 002 012
ete | oY Gon 00! oo (e eRe R Rt i WY o o fee) o N o ace) o o' e {001 065 010 301 200 003 00 008 053 0 001 1 o0 0wz o [0 001 001 003|201 007 000 010 a0 008 00 008 03 o0 aan aus 00 oon ovo Yoo aot act 0
ateboard {000 001 001 001 000 002 001 000 001 006 000 002 004 008 001 001 015 |HE| 014 000| gatepora {000 001 D01 002 000 002 000 000 001 003 000 006 002 006 001 001 025 [036 000| pteposa [000 000 001 002 000 001 00D 000 000 004 000 005 001 00s 001 002 010 [013 000
voin {000 001 001 002 000 002 000 000 001 003 000 002 001 005 002 000 009 018 [GHEN 000 4oin {000 001 001 003 000 003 000 001 000 007 000 003 001 009 003 000 012 003 [HNAN 000 woin {000 001 000 003 000 003 000 001 000 011 000 002 000 008 002 000 011 008 [HHEN 000

e | YR SN Y a0 fo Yt I Yoo fecaR Y e) oo [t e o ow oo s JEEY 0 Y) 00 (0! oo [Ncc2) oo fece] aoo oo fEEl aco’ use’ as o e | T .00 {0 [Y 00 o face) 0o oo [l o o) o mm
& @ FE S f'é @@é «© ;;\ ﬁ..\v@ S f\e‘ & d}: ﬁ-@@“ .@"é & *FES fg‘,s‘#@ &@; &s‘@ S F {g‘ & d_*;\ ‘Vf@* f‘ & @ FE S u’f,, «“’Q‘ & ﬁ‘;\ u@“”«‘“ S fxw‘ & f‘&o ﬁ“y &q@

Figure 3. Confusion matrices over 5K low-shot episodes of SimpleShot for Image Only, Shape-Biased without access to point clouds (w/o
pe) at test time and Shape-Biased with (w/ pc) access to point clouds at test time on the ShapeNet-LS dataset. As in ModelNet40-LS,
without access to point clouds (w/o pc) for building class prototypes, the shape-biased image embedding leads to improvements. Adding
point cloud support information (w/ pc) improves performance further. See Table 5 in the main text for aggregate results. Best viewed with

Zoom.

Architecture
PointNet [12]
PointNet++ [13]
DGCNN [17]
DGCNN (SO3)

‘ 1-shot 5-way accuracy
66.13
67.49
75.2
71.5

Table 2. Empirical study for choosing the best point cloud archi-
tecture. Reported is 1-shot 5-way classification accuracy on the
ModelNet40-LS validation set. We find that DGCNN performs
the best, and that randomly rotating each input point cloud during
training (indicated with SO3) results in a improvement in low-shot
generalization performance as well.

5. Details for Learning a Shape Biased Image
Embedding

The algorithm we use to train a shape-biased image em-
bedding is described with pseudocode in Algorithm 2. We
use the Adam optimizer with a batch size of 256, an ini-
tial learning rate of 0.001 and a Lo weight penalty weight
parameter of 0.0001. The model is trained for 400 epochs,
with a learning rate decay of 0.1 at epochs 300 and 360.

5.1. SimpleShot with Shape Bias

The SimpleShot [16] approach does not require any
learning (parameter updates) during the low-shot phase.

chicken boat cells_battery

Image Queri

il

Image Shots

= | |- -

marker

Point Cloud Shots.

marker

Tight_bulb

light_bulb

s apes marker ar [g

bus grapes marker ar bus o

“ 9|l >nn

*7@MM@§

Figure 4. Six low-shot episodes for 5 ways, 1 shot and 1 query on Toys4K for shape-biased SimpleShot. We visually display the composition
of the image and point cloud shots and the image queries, as well as the models’ predictions, illustrating cases where shape bias allows for

improved performance. Best viewed with zoom.

Classification is done using nearest centroid classification
in the embedding space. The image embedding function f;
is trained as described in Algorithm 2, and low-shot testing
is done following the same procedure as described in L8-16
in Algorithm 1 but using nearest centroid rather than nearest
neighbor classification.

5.2. FEAT with Shape Bias

The algorithm we use to train a shape-biased FEAT [19]
architecture is described in Algorithm 3. Note that the f;
used in this algorithm is being fine tuned from a mapping
already trained with Algorithm 2 while the FEAT set-to-
set function E is trained from scratch. For this experiment
we use the default hyperparameters recommended by the
FEAT authors. Low shot testing is done following the same
procedure as described in L13-22 in Algorithm 3 but using
the test set. The procedure we refer to as FEATCLASSIFY
is described in Eq. 4 on pg. 4 of the FEAT paper [19].
In the pseudocode FEATCLASSIFY performs classification
and directly outputs the per-episode classification accuracy.

Algorithm 2: Training Shape-Biased Image
Embedding Function f;

Algorithm 1: Training Shape Embedding f,

1

e 0 N R W N

-
=

11
12
13
14
15
16
17
18
19
20
21

Input: Randomly initialized point-cloud classifier
architecture f,, with embedding function ff
Total number of epochs IV,
Total number of mini-batches per epoch Ny
Total number of low-shot iterations for
validation V;;
Data: (point cloud, label) pair datasets D, Dval
Define: ¢ : cross-entropy loss
foreach epochin1,2,..., N, do
foreach mini-batch (0,,y) ~ D" of N, do
Predict gy = f,(0,)
Compute /(y,9)
Compute V£ with respect to f,
Update f, with SGD
end
A = ACCACCUMULATOR
foreach validation episode in 1,2, ..., N, do
Sample 5-way 1-shot
(Otrain, ytrain’ Otest) ~ Dval

p p

Predict g™ = fE (olin)

: test _ B test
Predict 9™ = f,7 (0}) A
acc = NNCLASSIFY (¢, y™", ™)

A(acc)

end

val accuracy = A.average()

if val accuracy > best accuracy then
best acuracy < val accuracy
le;est — fp

end

end
Result: Trained fp°"

Input: Randomly initialized image embedding
architecture f;
Point-cloud embedding function f, (1)
Total number of epochs IV,
Total number of mini-batches per epoch Ny
Total number of low-shot iterations for
validation IV;;
Data: (image, point cloud, label) pair datasets
DLrain’ Dval
Define: £ = £ + L5 (see main text for def.)
1 foreach epochin1,2,..., N, do

2 | foreach mini-batch (0;, 0, y) ~ D" of N, do
3 Predict shape embedding ¢, = f,,(0,)
4 Predict image embedding ¢; = f;(0;)
5 Compute L using ¢, and ¢;
6 Compute V£ with respect to f;
7 Update f; with Adam
8 end
9 A = ACCACCUMULATOR
10 foreach validation episode in 1,2,..., N, do
11 Sample 5-way 1-shot
(Ozrain, Otzl)‘ain’ ytrain’ O;esl) ~ Dval
12 Predict g™ = f,(ob™")
13 Predict ¢p" = f; (o'raim)
14 Predict ¢ = f;(of™)
15 e AVERAGE(qbga“", ¢>;ra“f)
16 acc = NNCLASSIFY (™" y'rain glest)
17 A(acc)
18 end
19 val accuracy = A.average()
20 if val accuracy > best accuracy then
21 best acuracy < val accuracy
n | | e,
23 end
24 end

Result: Trained [P

Algorithm 3: Training FEAT with Shape Bias

1
2
3

R=IE- -EEE N B LY B

11
12
13
14
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29

Input: Shape-biased image encoder f; (2)
Point-cloud embedding function f, (1)
Randomly initialized FEAT [19] set-to-set
function E—see p3 in [19].

Total number of epochs IV,
Total number of low-shot iterations per
training epoch N,
Total number of low-shot iterations for
validation N,,_;;
Data: (image, point cloud, label) pair datasets
Dtrain, Dval
Define: Lrgar — Eq. 7in [19]
foreach epochin 1,2,..., N, do

foreach training episode inof 1,2, ..., N;; do
Sample m-way n-shot
(Otirain’ Ogain, O%uery’ ytrain’ yquery) ~ Dtrain
Predict ptcld. support g™ = f,,(ol")
Predict image support ¢ = f; (o)
Predict image queries @) > = f;(0]"")
¢)train — AVERAGE(d)gain, ¢'§rain)
q[;lrain7 é?uery — E(¢train7 d)?uer}’)
Compute £ using ¢™", $3"*Y and
ytrain’ ,yquery
Compute VL with respect to f; and E
Update f;, E with SGD
end
A = ACCACCUMULATOR
foreach validation episode in 1,2,..., N,_;; do
Sample 5-way 1-shot
(O;rain, Ogain, ,ytrain7 Ogest) ~ Dval
Predict ptcld. support ¢i4" = f,,(offn)
Predict image support @M = f;(olrain)
Predict image queries ¢ = f;(o™)
¢lrain P AVERAGE((ZSEMH, ¢’;rain)
acc = FEATCLASSIFY(pin ytrain ghlest)
A(acc)
end
val accuracy = A.average()
if val accuracy > best accuracy then
best acuracy <— val accuracy
£
Ebest — E
end
end

Result: Trained fPet, EPest

‘ Training # samples ‘ Validation ~ # samples ‘ Testing # samples ‘
vessel 873 | train 389 | mug 214
car 530 | bed 233 | tower 133
sofa 500 | stove 218 | motorcycle 337
lamp 500 | bowl 186 | cap 56
cellular 500 | pillow 96 | pistol 307
faucet 500 | mailbox 94 | earphone 73
pot 500 | rocket 85 | skateboard 152
guitar 500 | birdhouse 73 | camera 113
airplane 500 | microphone 67 | piano 239
bus 500 | keyboard 65 | printer 166
chair 500 bag 83
rifle 500 trashcan 343
cabinet 500 file 298
bench 499 dishwasher 93
bathtub 499 microwave 152
telephone 499 washer 169
jar 499 remote 66
bottle 498 helmet 162
display 496 basket 113
clock 496 can 108
loudspeaker 496
table 495
laptop 460
bookshelf 452
knife 423
Total
25 classes 12716 [10 classes 1506 [20 classes 3377

Table 3. Split composition of ShapeNet55-LS

Training # samples | Validation # samples | Testing # samples
bed 615 | cup 99 | range hood 215
car 297 | xbox 123 | bowl 84
guitar 255 | bathtub 156 | stool 110
bottle 435 | cone 187 | radio 124
desk 286 | curtain 158 | stairs 144
night stand 286 | door 129 | lamp 144
glass box 271 | flower pot 169 | tent 183
sofa 780 | person 108 | sink 148
piano 331 | wardrobe 107 | bench 193
toilet 444 | keyboard 165 | laptop 169
monitor 565

table 492

dresser 286

airplane 726

tv stand 367

chair 989

bookshelf 672

vase 575

plant 340

mantel 384

Total

20 classes 9396 [10 classes 140110 classes 1514

Table 4. Split composition of ModelNet40-LS

Training # samples | Validation # samples | Testing # samples
candy 56 | airplane 35 | boat 38
flower 54 | shark 30 | lion 17
dragon 43 | truck 34 | whale 41
apple 54 | phone 23 | cupcake 28
guitar 55 | giraffe 15 | train 22
tree 57 | horse 37 | pizza 26
glass 63 | fish 37 | marker 19
cup 60 | fan 31 | cookie 28
pig 41 | shoe 41 | sandwich 15
cat 79 | snake 32 | octopus 31
chair 210 monkey 16
ice cream 43 fries 15
hat 64 violin 25
deer moose 65 mushroom 23
penguin 53 closet 15
ball 44 tractor 16
fox 64 submarine 18
dog 103 butterfly 18
knife 45 pear 18
laptop 41 bicycle 17
pen 42 dolphin 25
mug 97 bunny 27
plate 50 coin 33
chess piece 49 radio 40
cake 48 grapes 16
frog 43 banana 35
ladder 53 cow 25
keyboard 51 donut 34
sofa 63 stove 29
trashcan 44 sink 25
dinosaur 76 orange 24
bottle 111 saw 19
elephant 46 chicken 25
pencil 50 hamburger 16
key 49 piano 39
monitor 57 light bulb 15
hammer 94 spade 36
screwdriver 46 crab 40
robot 105 sheep 40
bread 38 toaster 21
lizard 20
motorcycle 16
mouse 25
pc mouse 15
bus 18
helicopter 20
microwave 18
cells battery 41
drum 26
panda 24
tv 21
car 28
helmet 17
fridge 31
bowl 28
Total
40 classes 2506 [10 classes 31555 classes 1358

Table 5. Split composition of Toys4K

Appendix References

[1] https://github.com/mileyan/simple_shot.

[2] https://github.com/WangYueFt/rfs/.

[3] https://github.com/Sha-Lab/FEAT.

[4] https : / / github . com / yanx27 / Pointnet _
Pointnet2_pytorch.

[5] https://github.com/AnTao97/dgcnn.pytorch.

[6] Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank
Wang, and Jia-Bin Huang. A closer look at few-shot classifi-
cation. In International Conference on Learning Representa-
tions, 2018.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recog-
nition, pages 770-778, 2016.

[8] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[9] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-
perative style, high-performance deep learning library. In Ad-
vances in neural information processing systems, pages 8026—
8037, 2019.

[10] E Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B.
Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M.
Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research,
12:2825-2830, 2011.

[11] Blender Proejct. https://blender.org.

[12] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification and
segmentation. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 652-660, 2017.

[13] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. In Advances in neural informa-
tion processing systems, pages 5099-5108, 2017.

[14] Yonglong Tian, Yue Wang, Dilip Krishnan, Joshua B Tenen-
baum, and Phillip Isola. Rethinking few-shot image classi-
fication: a good embedding is all you need? In European
Conference on Computer Vision (ECCV) 2020, August 2020.

[15] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan
Wierstra, et al. Matching networks for one shot learning.
In Advances in neural information processing systems, pages
3630-3638, 2016.

[16] Yan Wang, Wei-Lun Chao, Kilian Q Weinberger, and Lau-
rens van der Maaten. Simpleshot: Revisiting nearest-
neighbor classification for few-shot learning. arXiv preprint
arXiv:1911.04623, 2019.

[17] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. Acm Transactions On
Graphics (tog), 38(5):1-12, 2019.

[18] Erik Wijmans. Pointnet++ pytorch. https://github.
com/erikwijmans/Pointnet2_PyTorch, 2018. 1

[19] Han-Jia Ye, Hexiang Hu, De-Chuan Zhan, and Fei Sha. Few-
shot learning via embedding adaptation with set-to-set func-
tions. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), June 2020.

https://github.com/mileyan/simple_shot
https://github.com/WangYueFt/rfs/
https://github.com/Sha-Lab/FEAT
https://github.com/yanx27/Pointnet_Pointnet2_pytorch
https://github.com/yanx27/Pointnet_Pointnet2_pytorch
https://github.com/AnTao97/dgcnn.pytorch
https://blender.org
https://github.com/erikwijmans/Pointnet2_PyTorch
https://github.com/erikwijmans/Pointnet2_PyTorch

