
Supplementary materials for Using Shape to Categorize: Low-Shot Learning
with an Explicit Shape Bias—Appendix

Stefan Stojanov, Anh Thai, James M. Rehg
Georgia Institute of Technology

{sstojanov, athai6, rehg}@gatech.edu

This supplementary material document is structured as
follows: In Section 1 we provide further detail about the
training data used in the paper; In section 3 we provide de-
tails on the baselines used in the paper, their implementation
details and the hyperparameters used for training; In Sec-
tion 4 we provide empirical evidence about our choice of
point-cloud encoding architecture; In Section 5 we provide
further details about the training procedure of the shape-
biased image embeddings used in the paper.

1. Further Dataset Details

In this section we provide details on the composition of
the datasets used in the main paper. We provide example
images used to illustrate the data used for training in Fig-
ure 1. As a result of using a ray tracing-based renderer
Cycles [11], the synthetic image data used for training has
high realism. For all algorithms we use 224 × 224 RGB
images as input. For point cloud-based learning we use the
3D (x, y, z) coordinates 1024 randomly sampled points as
input. For images we use standard geometric data augmen-
tations e.g. flipping, cropping, slight translation and rota-
tion, as well as color jittering, since we found these result in
improved validation performance. For point clouds we use
the same augmentation procedures as in [18], which include
translation, jittering and dropout.

1.1. Toys4K

We provide further details on the composition of our new
Toys4K dataset in Table 1. The 40 train, 10 validation, and
55 test classes split is shown in Table 5. When perform-
ing validation and testing on Toys4K, we generate low-shot
episodes consisting of up to 5 shots and 10 queries.

1.2. ModelNet40-LS

The 20 train, 10 validation, 10 test classes split for
ModelNet40-LS is shown in Table 4. When performing
validation and testing on ModelNet40-LS, we generate low-
shot episodes consisting of up to 5 shots and 15 queries.

1.3. ShapeNet55-LS

The 25 train, 10 validation, 20 test classes split for
ShapeNet55-LS is shown in Table 3. When performing vali-
dation and testing on ShapeNet55-LS, we generate low-shot
episodes consisting of up to 5 shots and 15 queries.

2. Further Low-Shot Analysis

In this section we provide further analysis of the low-shot
performance by presenting confusion matrices and classifi-
cation performance in individual low-shot episodes.

2.1. Confusion Matrices

Please refer to Figure 2 and Figure 3 for low-shot confu-
sion matrices on ModelNet40-LS and ShapeNet55-LS. The
confusion matrices are obtained by evaluation 5K low-shot
episodes for each dataset (10-way for ModelNet40-LS and
20-way for ShapeNet55-LS), and counting how each sam-
ple was classified. The confusion matrices reflect the results
presented in Section 4 in the main text that adding shape
bias improves overall low-shot classification performance.

2.2. Per-episode Analysis

We provide a per-episode analysis of low-shot classi-
fication in Figure 4 to show qualitative evidence of low-
shot learning with shape bias. We see that there are cases
in which even though there are no view ambiguities, the
image-only model misclassifies whereas the shape-biased
model correctly classifies (e.g. in the lower left episode,
confusing bicycle for sheep).

3. Baseline Algorithm Details

All algorithms in this paper are implemented using Py-
Torch [9]. In this section we provide further detail about
the baseline implementations and hyperparameters used for
training.

1

ShapeNet Rendered Image Samples

chair

airplane

car

bookshelf

ModelNet Rendered Image Samples Toys4K Rendered Image Samples

car

sofa

lamp

vase

sofa

robot

helicopter

hammer

Figure 1. Rendered image samples from multiple categories of ShapeNet, ModelNet and Toys4K. Note the high image quality as a result
of using ray-tracing based rendering.

chair 210 tree 57 knife 45 piano 39 shark 30 panda 24 submarine 18
bottle 111 candy 56 trashcan 44 boat 38 stove 29 orange 24 helmet 17
robot 105 guitar 55 ball 44 bread 38 bowl 28 mushroom 23 bicycle 16
dog 103 apple 54 frog 43 fish 37 car 28 phone 23 lion 16
mug 97 flower 54 ice cream 43 horse 36 cookie 28 train 22 motorcycle 16
hammer 94 ladder 53 dragon 43 spade 36 cupcake 28 tv 21 hamburger 16
cat 79 penguin 51 pan 42 banana 35 bunny 27 toaster 21 grapes 16
dinosaur 76 keyboard 51 battery cell 41 airplane 35 drum 26 helicopter 20 tractor 16
deer/moose 65 pencil 50 whale 41 donut 34 pizza 26 lizard 20 monkey 16
fox 64 plate 50 shoe 40 truck 34 mouse 25 saw 19 pc mouse 15
hat 64 key 49 laptop 40 coin 33 chicken 25 marker 19 light bulb 15
sofa 63 chess piece 49 pig 40 snake 32 sink 25 microwave 18 closet 15
glass 63 cake 48 sheep 39 fridge 32 cow 25 bus 18 fries 15
cup 60 screwdriver 46 crab 38 octopus 31 dolphin 25 pear 18 sandwich 15
monitor 57 elephant 46 radio 38 fan 31 violin 25 butterfly 18 giraffe 15

Table 1. The category composition of the Toys4K dataset.

3.1. SimpleShot

The implementation in our codebase for SimpleShot [16]
is based on the code release by the authors in [1]. The au-
thors report a 1-shot 5-way accuracy of 49.69(0.19) and a 5-
shot 5-way accuracy of 66.92(0.17) on miniImageNet [15]
with the Conv4 architecture. The reimplementation of Sim-
pleShot in our codebase with the same dataset and architec-
ture results in 1-shot 5-way accuracy of 50.60(0.34) and a
5-shot 5-way accuracy of 68.06(0.23).

In all our experiments we train SimpleShot with SGD
with an initial learning rate of 0.01 and a learning rate de-
cay of 0.1 at epochs 300 and 360, out of a total of 400
epochs. SimpleShot employs three different feature normal-
ization strategies, no normalization, L2 normalization and
L2 normalization and training set mean subtraction. In ex-

periments with SimpleShot we report the result of the best
of these three normalization strategies.

3.2. RFS

The implementation in our codebase for RFS [14] is
based on the code release by the authors in [2]. The original
codebase obtains a 1-shot 5-way accuracy of 53.73(0.81)
on miniImageNet [15] with the Conv4 architecture. The
reimplementation of RFS in our codebase with the same
dataset and architecture results in 1-shot 5-way accuracy of
54.59(0.86). RFS requires training an embedding on the
training dataset using cross-entropy. We train this embed-
ding space with SGD using a learning rate of 0.001, mo-
mentum of 0.9 and L2 weight penalty weight parameter of
0.0005. For each low-shot episode we train a logistic re-

2

gression classifier using Scikit-learn[10], as in the original
RFS.

3.3. FEAT

The implementation for FEAT is based on the code re-
lease by the authors in [3]. The original codebase obtains
a 1-shot 5-way accuracy of 54.85(0.20) and 5-shot 5-way
accuracy of 71.61 on miniImageNet [15] with the Conv4
architecture. The reimplementation of FEAT in our code-
base with the same dataset and architecture results in 1-shot
5-way accuracy of 54.85(0.20) 5-shot 5-way accuracy of
71.45(0.73). We train FEAT with the default hyperparame-
ters recommended by the authors, training separate models
for 5-way and 10-way classification, and separate models
for 1-shot and 5-shot, as recommended by the authors. For
the shape biased FEAT we do not use learning rate schedul-
ing and momentum, since they have a negative effect on
performance for shape-biased training. Removing them for
image-only training does not affect performance.

3.4. Protoypical Networks

The implementation in our codebase for Prototypical
Networks is based on the code release by the SimpleShot
authors in [1]. In [6] the authors report that their reimple-
mentation obtains a 5-shot 5-way accuracy of 66.68(0.68)
on miniImageNet [15] with the Conv4 architecture. The
reimplementation of Prototypical Networks in our code-
base with the same dataset and architecture results in 5-
shot 5-way accuracy of 66.94(0.71). We train separate Pro-
totypical Networks models for 5-shot classification and 1-
shot classification. As recommended by the authors of the
original paper, we perform 20-way training. We use the
Adam [8] optimizer, 400 low-shot iterations per epoch, 200
epochs total, and a learning rate of 0.0001 L2 and weight
penalty weight parameter of 0.00001. We perform a learn-
ing rate decay of 0.5 every 20 epochs.

3.5. Triplet Model

We implement a joint triplet model using both point
cloud (DGCNN [17] and image (ResNet18 [7]) encoders,
which can use both image and shape information during
training. Let fi denote the image encoder, fp denote the
point cloud encoder, and φkp and φki denote the point cloud
and image encodings of object instance k respectively. We
learn a joint image/shape embedding by minimizing a stan-
dard triplet loss

L(φki , φkp, φlp) = max
{
d(φki , φ

k
p)− d(φkp, φ

l
p) + margin, 0

}
d(x, y) = ||x− y||2

where the anchor is an image embedding of instance k, φki ,
the positive sample is a point cloud encoding of the same
object instance, φki , and the negative sample is a φlp is a

point cloud embedding of a different object instance l. We
perform L2 normalization of the embeddings prior to com-
puting the loss. Note that it is possible to build (anchor,
positive, negative) pairs using category information, but we
empirically found that this leads to worse performance.

We train the triplet model using the Adam [8] optimizer
with a learning rate of 0.0001, L2 weight penalty weight
parameter of 0.0001, and margin of 0.1. We use a batch
size of 72 and train for 600 epochs, each epoch consisting
of 20K random samples.

4. Learning a Point Cloud Shape Embedding

In this section we describe the algorithm for learning a
point-cloud based embedding space, and present an empiri-
cal study for our point cloud architecture choice.

4.1. Algorithm

The algorithm we use to train a point-cloud embedding
space is based on SimpleShot [16] and is described with
pseudocode in Algorithm 1. Note that the routine AccAccu-
mulator is used denotes a function to collect the validation
accuracy of each low-shot episode and compute summary
statistics. The NNCLASSIFY routine takes support features
and labels, and classifies each test query feature based on
a nearest neighbors rule using cosine similarity. The point-
cloud embedding model is trained using SGD with a learn-
ing rate of 0.01, batch size of 129, and L2 weight penalty
weight parameter of 0.0001. We perform learning rate de-
cay by 0.1 at epochs 300 and 360. In all models we use
features from the output of the pooling layer in the architec-
ture.

4.2. Architecture Study

We perform an empirical study on the point cloud archi-
tectures to determine which is capable of the best low-shot
generalization performance. Our PointNet [12] implemen-
tation is based on [4], our PointNet++ [13] is based on [18]
and our DGCNN [17] implementation is based on [5]. We
use a DGCNN architecture with a reduced embedding di-
mension (size after the pooling operation) of 512 rather
than the original 1024, to match the dimensionality of the
ResNet18 embeddings. We find no decrease in performance
by this reduction. We present the results of this study on
ModelNet in Table 2. The DGCNN [17] architecture out-
performs other point cloud architectures at low-shot gener-
alization to novel categories. We find that randomly rotating
the input point cloud about the origin during training (ran-
dom rotation about all axes of rotation, indicated by SO3
in the table) results in a performance improvement. We use
this SO3 strategy for all shape-embedding space learning
experiments.

3

Figure 2. Confusion matrices over 5K low-shot episodes of SimpleShot for Image Only, Shape-Biased without access to point clouds (w/o
pc) at test time and Shape-Biased with (w/ pc) access to point clouds at test time on the ModelNet-LS dataset. Even without access to
point clouds (w/o pc) for building class prototypes, the shape-biased image embedding leads to improvements. Adding point cloud support
information (w/ pc) improves performance further. See Table 3 in the main text for aggregate results.

Figure 3. Confusion matrices over 5K low-shot episodes of SimpleShot for Image Only, Shape-Biased without access to point clouds (w/o
pc) at test time and Shape-Biased with (w/ pc) access to point clouds at test time on the ShapeNet-LS dataset. As in ModelNet40-LS,
without access to point clouds (w/o pc) for building class prototypes, the shape-biased image embedding leads to improvements. Adding
point cloud support information (w/ pc) improves performance further. See Table 5 in the main text for aggregate results. Best viewed with
zoom.

Architecture 1-shot 5-way accuracy
PointNet [12] 66.13
PointNet++ [13] 67.49
DGCNN [17] 75.2
DGCNN (SO3) 77.5

Table 2. Empirical study for choosing the best point cloud archi-
tecture. Reported is 1-shot 5-way classification accuracy on the
ModelNet40-LS validation set. We find that DGCNN performs
the best, and that randomly rotating each input point cloud during
training (indicated with SO3) results in a improvement in low-shot
generalization performance as well.

5. Details for Learning a Shape Biased Image
Embedding

The algorithm we use to train a shape-biased image em-
bedding is described with pseudocode in Algorithm 2. We
use the Adam optimizer with a batch size of 256, an ini-
tial learning rate of 0.001 and a L2 weight penalty weight
parameter of 0.0001. The model is trained for 400 epochs,
with a learning rate decay of 0.1 at epochs 300 and 360.

5.1. SimpleShot with Shape Bias

The SimpleShot [16] approach does not require any
learning (parameter updates) during the low-shot phase.

4

Figure 4. Six low-shot episodes for 5 ways, 1 shot and 1 query on Toys4K for shape-biased SimpleShot. We visually display the composition
of the image and point cloud shots and the image queries, as well as the models’ predictions, illustrating cases where shape bias allows for
improved performance. Best viewed with zoom.

Classification is done using nearest centroid classification
in the embedding space. The image embedding function fi
is trained as described in Algorithm 2, and low-shot testing
is done following the same procedure as described in L8-16
in Algorithm 1 but using nearest centroid rather than nearest
neighbor classification.

5.2. FEAT with Shape Bias

The algorithm we use to train a shape-biased FEAT [19]
architecture is described in Algorithm 3. Note that the fi
used in this algorithm is being fine tuned from a mapping
already trained with Algorithm 2 while the FEAT set-to-
set function E is trained from scratch. For this experiment
we use the default hyperparameters recommended by the
FEAT authors. Low shot testing is done following the same
procedure as described in L13-22 in Algorithm 3 but using
the test set. The procedure we refer to as FEATCLASSIFY
is described in Eq. 4 on pg. 4 of the FEAT paper [19].
In the pseudocode FEATCLASSIFY performs classification
and directly outputs the per-episode classification accuracy.

5

Algorithm 1: Training Shape Embedding fp
Input: Randomly initialized point-cloud classifier

architecture fp with embedding function fEp
Total number of epochs Ne

Total number of mini-batches per epoch Nb

Total number of low-shot iterations for
validation Nit

Data: (point cloud, label) pair datasets Dtrain, Dval

Define: ` : cross-entropy loss
1 foreach epoch in 1, 2, . . . , Ne do
2 foreach mini-batch (op,y) ∼ Dtrain of Nb do
3 Predict ŷ = fp(op)
4 Compute `(y, ŷ)
5 Compute∇` with respect to fp
6 Update fp with SGD
7 end
8 A = ACCACCUMULATOR
9 foreach validation episode in 1, 2, . . . , Ne do

10 Sample 5-way 1-shot
(otrain

p ,ytrain,otest
p) ∼ Dval

11 Predict φtrain
p = fEp (otrain

p)

12 Predict φtest
p = fEp (otest

p)

13 acc = NNCLASSIFY(φtrain
p ,ytrain,φtest

p)
14 A(acc)
15 end
16 val accuracy = A.average()
17 if val accuracy > best accuracy then
18 best acuracy← val accuracy
19 f best

p ← fp
20 end
21 end

Result: Trained f best
p

Algorithm 2: Training Shape-Biased Image
Embedding Function fi

Input: Randomly initialized image embedding
architecture fi
Point-cloud embedding function fp (1)
Total number of epochs Ne

Total number of mini-batches per epoch Nb

Total number of low-shot iterations for
validation Nit

Data: (image, point cloud, label) pair datasets
Dtrain, Dval

Define: L = L1 + L2 (see main text for def.)
1 foreach epoch in 1, 2, . . . , Ne do
2 foreach mini-batch (oi,op,y) ∼ Dtrain of Nb do
3 Predict shape embedding φp = fp(op)
4 Predict image embedding φi = fi(oi)
5 Compute L using φp and φi

6 Compute∇L with respect to fi
7 Update fi with Adam
8 end
9 A = ACCACCUMULATOR

10 foreach validation episode in 1, 2, . . . , Ne do
11 Sample 5-way 1-shot

(otrain
i ,otrain

p ,ytrain,otest
i) ∼ Dval

12 Predict φtrain
p = fp(o

train
p)

13 Predict φtrain
i = fi(o

train
i)

14 Predict φtest
i = fi(o

test
i)

15 φtrain ← AVERAGE(φtrain
p ,φtrain

i)

16 acc = NNCLASSIFY(φtrain,ytrain,φtest
i)

17 A(acc)
18 end
19 val accuracy = A.average()
20 if val accuracy > best accuracy then
21 best acuracy← val accuracy
22 f best

i ← fi
23 end
24 end

Result: Trained f best
i

6

Algorithm 3: Training FEAT with Shape Bias
Input: Shape-biased image encoder fi (2)

Point-cloud embedding function fp (1)
Randomly initialized FEAT [19] set-to-set
function E–see p3 in [19].
Total number of epochs Ne

Total number of low-shot iterations per
training epoch Nit

Total number of low-shot iterations for
validation Nv−it

Data: (image, point cloud, label) pair datasets
Dtrain, Dval

Define: LFEAT – Eq. 7 in [19]
1 foreach epoch in 1, 2, . . . , Ne do
2 foreach training episode in of 1, 2, . . . , Nit do
3 Sample m-way n-shot

(otrain
i ,otrain

p ,oquery
p ,ytrain,yquery) ∼ Dtrain

4 Predict ptcld. support φtrain
p = fp(o

train
p)

5 Predict image support φtrain
i = fi(o

train
i)

6 Predict image queries φquery
i = fi(o

query
i)

7 φtrain ← AVERAGE(φtrain
p ,φtrain

i)

8 φ̂train, φ̂query
i ← E(φtrain,φquery

i)

9 Compute L using φ̂train, φ̂query
i and

ytrain,yquery

10 Compute∇L with respect to fi and E
11 Update fi,E with SGD
12 end
13 A = ACCACCUMULATOR
14 foreach validation episode in 1, 2, . . . , Nv−it do
15 Sample 5-way 1-shot

(otrain
i ,otrain

p ,ytrain,otest
i) ∼ Dval

16 Predict ptcld. support φtrain
p = fp(o

train
p)

17 Predict image support φtrain
i = fi(o

train
i)

18 Predict image queries φtest
i = fi(o

test
i)

19 φtrain ← AVERAGE(φtrain
p ,φtrain

i)

20 acc = FEATCLASSIFY(φtrain,ytrain,φtest
i)

21 A(acc)
22 end
23 val accuracy = A.average()
24 if val accuracy > best accuracy then
25 best acuracy← val accuracy
26 f best

i ← fi
27 Ebest ← E

28 end
29 end

Result: Trained f best
i ,Ebest

7

Training # samples Validation # samples Testing # samples
vessel 873 train 389 mug 214
car 530 bed 233 tower 133
sofa 500 stove 218 motorcycle 337
lamp 500 bowl 186 cap 56
cellular 500 pillow 96 pistol 307
faucet 500 mailbox 94 earphone 73
pot 500 rocket 85 skateboard 152
guitar 500 birdhouse 73 camera 113
airplane 500 microphone 67 piano 239
bus 500 keyboard 65 printer 166
chair 500 bag 83
rifle 500 trashcan 343
cabinet 500 file 298
bench 499 dishwasher 93
bathtub 499 microwave 152
telephone 499 washer 169
jar 499 remote 66
bottle 498 helmet 162
display 496 basket 113
clock 496 can 108
loudspeaker 496
table 495
laptop 460
bookshelf 452
knife 423
Total
25 classes 12716 10 classes 1506 20 classes 3377

Table 3. Split composition of ShapeNet55-LS

Training # samples Validation # samples Testing # samples
bed 615 cup 99 range hood 215
car 297 xbox 123 bowl 84
guitar 255 bathtub 156 stool 110
bottle 435 cone 187 radio 124
desk 286 curtain 158 stairs 144
night stand 286 door 129 lamp 144
glass box 271 flower pot 169 tent 183
sofa 780 person 108 sink 148
piano 331 wardrobe 107 bench 193
toilet 444 keyboard 165 laptop 169
monitor 565
table 492
dresser 286
airplane 726
tv stand 367
chair 989
bookshelf 672
vase 575
plant 340
mantel 384
Total
20 classes 9396 10 classes 1401 10 classes 1514

Table 4. Split composition of ModelNet40-LS

Training # samples Validation # samples Testing # samples
candy 56 airplane 35 boat 38
flower 54 shark 30 lion 17
dragon 43 truck 34 whale 41
apple 54 phone 23 cupcake 28
guitar 55 giraffe 15 train 22
tree 57 horse 37 pizza 26
glass 63 fish 37 marker 19
cup 60 fan 31 cookie 28
pig 41 shoe 41 sandwich 15
cat 79 snake 32 octopus 31
chair 210 monkey 16
ice cream 43 fries 15
hat 64 violin 25
deer moose 65 mushroom 23
penguin 53 closet 15
ball 44 tractor 16
fox 64 submarine 18
dog 103 butterfly 18
knife 45 pear 18
laptop 41 bicycle 17
pen 42 dolphin 25
mug 97 bunny 27
plate 50 coin 33
chess piece 49 radio 40
cake 48 grapes 16
frog 43 banana 35
ladder 53 cow 25
keyboard 51 donut 34
sofa 63 stove 29
trashcan 44 sink 25
dinosaur 76 orange 24
bottle 111 saw 19
elephant 46 chicken 25
pencil 50 hamburger 16
key 49 piano 39
monitor 57 light bulb 15
hammer 94 spade 36
screwdriver 46 crab 40
robot 105 sheep 40
bread 38 toaster 21

lizard 20
motorcycle 16
mouse 25
pc mouse 15
bus 18
helicopter 20
microwave 18
cells battery 41
drum 26
panda 24
tv 21
car 28
helmet 17
fridge 31
bowl 28

Total
40 classes 2506 10 classes 315 55 classes 1358

Table 5. Split composition of Toys4K

8

Appendix References
[1] https://github.com/mileyan/simple_shot.
[2] https://github.com/WangYueFt/rfs/.
[3] https://github.com/Sha-Lab/FEAT.
[4] https : / / github . com / yanx27 / Pointnet _

Pointnet2_pytorch.
[5] https://github.com/AnTao97/dgcnn.pytorch.
[6] Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank

Wang, and Jia-Bin Huang. A closer look at few-shot classifi-
cation. In International Conference on Learning Representa-
tions, 2018.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recog-
nition, pages 770–778, 2016.

[8] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[9] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-
perative style, high-performance deep learning library. In Ad-
vances in neural information processing systems, pages 8026–
8037, 2019.

[10] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B.
Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M.
Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

[11] Blender Proejct. https://blender.org.
[12] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.

Pointnet: Deep learning on point sets for 3d classification and
segmentation. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 652–660, 2017.

[13] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. In Advances in neural informa-
tion processing systems, pages 5099–5108, 2017.

[14] Yonglong Tian, Yue Wang, Dilip Krishnan, Joshua B Tenen-
baum, and Phillip Isola. Rethinking few-shot image classi-
fication: a good embedding is all you need? In European
Conference on Computer Vision (ECCV) 2020, August 2020.

[15] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan
Wierstra, et al. Matching networks for one shot learning.
In Advances in neural information processing systems, pages
3630–3638, 2016.

[16] Yan Wang, Wei-Lun Chao, Kilian Q Weinberger, and Lau-
rens van der Maaten. Simpleshot: Revisiting nearest-
neighbor classification for few-shot learning. arXiv preprint
arXiv:1911.04623, 2019.

[17] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. Acm Transactions On
Graphics (tog), 38(5):1–12, 2019.

[18] Erik Wijmans. Pointnet++ pytorch. https://github.
com/erikwijmans/Pointnet2_PyTorch, 2018. 1

[19] Han-Jia Ye, Hexiang Hu, De-Chuan Zhan, and Fei Sha. Few-
shot learning via embedding adaptation with set-to-set func-
tions. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), June 2020.

9

https://github.com/mileyan/simple_shot
https://github.com/WangYueFt/rfs/
https://github.com/Sha-Lab/FEAT
https://github.com/yanx27/Pointnet_Pointnet2_pytorch
https://github.com/yanx27/Pointnet_Pointnet2_pytorch
https://github.com/AnTao97/dgcnn.pytorch
https://blender.org
https://github.com/erikwijmans/Pointnet2_PyTorch
https://github.com/erikwijmans/Pointnet2_PyTorch

