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1. Results on Semi-Aves with a different split

Since the original split of Semi-Aves was used for hyper-
parameter selection, we create another split of the dataset
for additional evaluation, which can be seen as a two-fold
cross-validation. We first merge the images from Lin, Uin,
and test sets, then randomly redistribute. The classes and the
number of images of each class are kept the same in each set.
The Uout set is also unchanged. Thus this split has roughly
the same difficulty as the original split but contains new in-
domain training and test images. We show the results of this
split in Tab. 1, using the same hyper-parameters of the main
paper. The trends are similar — Self-Training and FixMatch
are both effective, but FixMatch is affected negatively by the
out-of-class data.

2. SSL benchmark on the CUB dataset

Since Semi-Aves and Semi-Fungi are new datasets, here
we provide another benchmark based on the widely-used
Caltech-UCSD Birds-200-2011 (CUB) dataset [7]. The orig-
inal class labels are sorted by the species name. Hence,
we select the 100 odd classes as in-class species and 100
even classes as out-of-class species, to ensure a low domain
mismatch between Uin and Uout. There are 41-60 images
per class originally (disregard the original training/test split).
For each in-class species, we select 5/5/10 images for Lin,
validation set, and test set. The rest (21-40 images) are used
for unlabeled data Uin. For out-of-class species, all the im-
ages are included in Uout. The statistics of the dataset split is
shown in Tab. 2. Since the dataset is quite small, we did not
use self-supervised learning (MoCo) for pre-training, and
we use the validation set to select the best model. The results
on the CUB dataset are shown in Tab. 3. In this benchmark,
we can see that both Curriculum Pseudo-Label and Self-
Training are helpful, even when having Uout included. This
is potentially due to the small domain mismatch between the
two sets of unlabeled data.

3. Related prior work on SSL analysis
On out-of-class unlabeled data. Oliver et al. [5] showed

that out-of-class unlabeled data negatively impacts perfor-
mance, but analysis was done on CIFAR-10 with images
from 6 labeled and 4 unlabeled classes. The classes are quite
different making the problem of selecting in-domain images
relatively easy in comparison to fine-grained domains — in
our benchmarks the out-of-class data Uout are other species
of birds or fungi. In fact, we show that more out-of-class data
helps when using self-supervised and self-training methods
trained from scratch. However, the additional data does not
seem to help when initialized with experts.

On transfer learning. Oliver et al. showed a transfer
learning accuracy of 87.9% on CIFAR-10 with 4k labels,
outperforming many SSL methods including PL [3] and
VAT+EM [4]. Although recent results are better, the low res-
olution of CIFAR-10 (32×32 pixels) makes transfer learn-
ing from ImageNet less effective. On STL-10 that has a
higher resolution (96×96 pixels), fine-tuning a ImageNet
pre-trained ResNet-50 model on 5k labels provides 97.2%
accuracy, while that trained on iNaturalist provides 95.0%
accuracy. This beats 94.8% of FixMatch using 5k labeled
examples when trained from scratch. Note that the iNatural-
ist dataset has no overlap with STL-10, yet transfer learning
is effective.

4. Analysis on out-of-class unlabeled data
The effect of threshold parameter for Pseudo-Label.

We found Pseudo-Label method is sensitive to the threshold
parameter τ . Fig. 1 plots the accuracy as a function of τ with
different unlabeled data and experts on Semi-Aves. A higher
threshold performs better, especially in the presence of out-
of-class data Uout as this excludes novel class images where
the confidence of prediction is likely to be low. On the other
hand, lower values work just as well when unlabeled data is
in-domain Uin. However, this scheme only appears to work
when using strong experts (e.g., iNat) whose confidence is
likely calibrated, unlike random or ImageNet pre-trained
model, where the presence of out-of-class data reduces per-



Method from scratch from ImageNet from iNat
Top1 Top5 Top1 Top5 Top1 Top5

Supervised baseline 21.8 42.9 51.9 76.0 66.7 85.9
Supervised oracle 56.0 78.7 71.9 89.4 76.7 91.2

U
in

Pseudo-Label [3] 18.0 37.4 54.3 79.1 66.3 86.4
Curriculum Pseudo-Label [1] 20.0 41.5 53.4 79.0 70.0 88.7

FixMatch [6] 24.0 47.6 58.2 79.6 70.4 88.2
Self-Training 23.7 45.1 53.9 76.8 67.6 86.4

MoCo [2] 28.5 54.7 52.8 79.2 69.4 88.3
MoCo + Self-Training 34.0 58.9 56.6 80.1 71.1 88.3

U
in

+
U
o
u
t

Pseudo-Label [3] 11.8 30.7 53.6 78.1 66.8 86.4
Curriculum Pseudo-Label [1] 21.3 42.1 53.8 79.4 69.9 88.5

FixMatch [6] 17.5 39.7 50.8 74.4 65.1 85.1
Self-Training 23.0 45.0 54.3 77.1 68.0 86.1

MoCo [2] 37.9 65.4 51.0 78.6 68.5 87.8
MoCo + Self-Training 40.8 66.8 55.0 80.2 68.9 87.9

Table 1. Results on Semi-Aves benchmark with a different split. Using the same hyper-parameters, we can see similar conclusions here
as using the original split. Overall, Self-Training and FixMatch are effective but out-of-class data often hurts the performance.

split→ Lin val test Uin Uout

#images→ 500 500 1000 3853 5903
Table 2. Number of images in the CUB benchmark.
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Figure 1. Pseudo-label with different threshold τ . Pseudo-label
is sensitive to the threshold hyperparameter. The negative impact of
out-of-class unlabeled data is reduced by increasing the threshold,
yet when the initial performance is low the scheme is not effective
as seen by the performance of the ImageNet pre-trained model.

formance. This poses a practical problem for this method —
increasing the threshold increases robustness but reduces the
amount of unlabeled data that is used during training.

The effect of out-of-class unlabeled data. To see how
the domain mismatch between Uin and Uout can affect SSL
methods, we analyze the predictions of the unlabeled data.

We use the supervised model trained on Lin to compute the
predictions of the unlabeled data on the Semi-Aves dataset.
We plot the histogram of the maximum probability and the
entropy of the predictions of Uin and Uout in Fig. 2 (left
and middle). We also plot the distribution of the distilla-
tion loss, which is calculated between the supervised model
(teacher) and the ImageNet pre-trained model (student), with
a temperature T = 1 (Fig. 2 right). This is in the begin-
ning of the self-training process and the last layer of the
student model is randomly initialized. Overall, the model is
generally more uncertain about the out-of-class data, which
often has a higher entropy or a smaller maximum probability.
The distillation loss on Uin is also often higher than that of
Uout, suggesting the model focuses more on those from Uin

during training. However, there is still a good amount of
data from Uout having a high maximum probability, which
has a negative impact for pseudo-label methods.

5. Implementation details of FixMatch
For FixMatch, we used the official Tensorflow code and

a PyTorch re-implementation for our experiments. The Py-
Torch version did reproduce the results on CIFAR-10 with
4000 labels (95.68% vs 95.74% reported in the paper). We
found the optimization details such as learning rate, batch
size, and number of epochs to be crucial for FixMatch. Due
to the limitation of our resources, we can only use a batch
size of 64 for labeled data (and 320 for unlabeled data),
where the original paper used a batch size of 1024 (and 5120
for unlabeled data). Since there is small discrepancy between
the two implementations, we reported the best result among
the two for each setting: Tensorflow version for training from
scratch and PyTorch version when using expert models.



Method from scratch from ImageNet from iNat
Top1 Top5 Top1 Top5 Top1 Top5

Supervised baseline 11.1 27.4 58.7 85.8 77.3 94.2
Supervised oracle 68.5 87.8 84.5 97.1 90.0 98.0

U
in

Pseudo-Label [3] 13.5 32.1 57.0 85.3 78.3 95.7
Curriculum Pseudo-Label [1] 14.5 31.4 57.3 84.7 80.1 96.7

FixMatch [6] 10.7 26.6 53.2 79.8 81.6 95.2
Self-Training 12.6 29.8 61.3 86.3 80.6 95.8

U
in

+
U
o
u
t Pseudo-Label [3] 11.9 30.8 59.1 86.1 77.7 94.8

Curriculum Pseudo-Label [1] 12.9 32.3 59.6 86.5 81.2 96.8
FixMatch [6] 10.7 27.1 52.8 81.7 78.6 95.7
Self-Training 12.2 29.2 61.4 85.9 79.9 96.0

Table 3. SSL benchmark on the CUB dataset. In this benchmark, we can see both Curriculum Pseudo-Label and Self-Training are helpful,
even with out-of-class unlabeled data.
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Figure 2. Predictions of unlabeled data using a supervised model. We plot the distribution of the predictions of data from Uin and Uout.
Specifically, we plot the maximum probability of the class predictions (left), entropy of the predictions (middle), and the distillation loss
between the teacher and student model before the training starts (right). Unlabeled data from the same distribution tend to have a higher
maximum probability, a lower entropy, or a higher distillation loss.

6. Value for computing
Among the SSL methods, Pseudo-Label requires the least

amount of computation, but it does not uniformly lead to
improvements in our benchmark. Curriculum Pseudo-Label
trains a model several times (six in our implementation),
hence is more expensive, though the performance saturates
after the first few iterations. FixMatch requires more train-
ing epochs and is the most time-consuming comparing to
other SSL methods, but the performance is the best when
having expert model with in-class unlabeled data only. Self-
training only needs two rounds of training, one for training
the teacher model and one for the student. However, it is
often the best and is more robust to out-of-class data.
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