
A. Detailed Experimental Settings
In this section, we will describe the detailed experimental settings of our MCT-NAS w.r.t. training and searching. In

general, we used the same MCT during training and searching, and thus the constructed MCT with prioritized sampled paths
can boost the search in terms of efficiency and search performance.

Supernet training with MCT-NAS. For ImageNet dataset, we use the same strategy follow [35, 9]. In detail, we use a
batch size of 1024, and train the supernet using a SGD optimizer with 0.9 momentum. A cosine annealing strategy is adopted
with an initial learning rate 0.12, which decays 120 epochs. For sampling architectures, we first warm up the supernet with
50% of overall training epochs (60 epochs) with uniform sampling. Then for the last 60 epochs, we sample subnets with
FLOPs reduction, i.e., the FLOPs of sampled subnets must be within a certain range of FLOPs budget(i.e., 0.9× ∼ 1.0×). In
the 20% of following training epochs (61-85 epochs), we also uniformly sample subnets to construct the MCT. Afterward, in
the last 34 epochs (86-120), we sample subnets with MCT and UCT function defined in Eq. (6) and Eq. (8). In detail, we
adopt C1 = 0.1 and C2 = 0.2 for Eq. (8) and Eq. (9). Besides, for NAS-Bench-Macro, we follow the same split ratios of
using uniform sampling and MCTS as on ImageNet. And other training strategies are the same as retraining on CIFAR-10.

Searching optimal structure with MCT-NAS. We use hierarchical node selection with MCT for architecture search. For
sampling a path (subnet), we select the optimal nodes hierarchically from the root node of MCT with a threshold constant
nthrd of 6. If the average number of visits of its child nodes is lower than the nthrd, we randomly sample paths consisting
of those child nodes and then evaluate the paths using a batch (i.e., 128) of validation data until the threshold reached. After
selecting the leaf nodes, the specific subnet (structure) is obtained; we then evaluate it with the full validation dataset. More-
over, we repeat to sample subnets with this process until we reach our predefined number of searches (i.e., 20). Afterward,
we select the structure with the best validation accuracy to train from scratch for evaluation.

Retraining of searched optimal structures. To train the obtained architectures from scratch, we follow previous works
[25, 35, 2], the network is trained using RMSProp optimizer with 0.9 momentum, and the learning rate is increased from 0
to 0.064 linearly in the first 5 epochs with batch size 512, and then decays 0.03 every 2.4 epochs. Besides, the exponential
moving average on weights is also adopted with a decay rate 0.9999.

B. Details of Path Sampling in Supernet Training
The supernet training in our framework can be divided into three stages with different subnet sampling strategies, including

the supernet warm-up, the MCT warm-up, and sampling with MCTS. Firstly, in the supernet warm-up stage, we sample each
path uniformly for a better search space exploration, which is the same as [9, 2]. Then, in the MCT warm-up stage, we also
sample each path uniformly but discard those who do not meet the computation budget (i.e., a certain range of FLOPs budget).
Architectures with low computation budget are expected to have lower performance, which makes them less worthy of being
optimized and evaluated. In this way, we can construct the MCT more efficiently. Finally, we sample paths according to the
UCT function in Eq. (8) to train the supernet more efficiently with exploration-exploitation strategy in MCTS. Our iterative
procedure of training supernet is presented in Algorithm 2.



Algorithm 2: Path Sampling in Supernet Training
Input: the ratio of iterations for supernet warm-up WS , the ratio of iterations for MCT warm-up WM , training

dataset Dtr the maximum training iterations N , FLOPs budget B.
1 while training epochs < N do
2 if training epochs < WS ×N then
3 randomly sample a path p in the supernet;
4 optimize the path p with dataset Dtr;
5 else
6 if training epochs < (WS +WM )×N then
7 random sample a path p;
8 while FLOPs of path p not in the certain range of B do
9 re-sample a new path p;

10 end
11 else
12 sample a path p based on MCT with Hierarchical Node Selection as Algorithm 1 ;
13 end
14 optimize the path p with dataset Dtr;
15 updating the nodes in MCT which corresponds to path p with the training loss;
16 end
17 end

C. Details of Search Space on ImageNet Dataset
The macros-structure of the supernet used in our experiments on ImageNet is as described in Table 4. The choices for

building blocks are as listed in Table 5.

Table 4. The macro-structure of the supernet in our experiments on ImageNet. The mean of each column is as follow: ”n” is the number
of such stacked building blocks; ”input” is the size of input feature map; ”block” is the type of building block; ”channels” is the number
of output channels, i.e. the number of filters; and ”stride” is the stride of the first block among several repeated building blocks. The block
type ”Choice Block” means selecting a candidate from Table 5.

n input block channels stride
1 224× 224× 3 3× 3 conv 32 2
1 112× 112× 32 MB1 K3 16 1
4 112× 112× 16 Choice Block 32 2
4 56× 56× 32 Choice Block 40 2
4 28× 28× 40 Choice Block 80 2
4 14× 14× 80 Choice Block 96 1
4 14× 14× 96 Choice Block 192 2
1 7× 7× 192 Choice Block 320 1
1 7× 7× 320 1× 1 conv 1280 1
1 7× 7× 1280 global avgpool - -
1 1280 FC 1000 -

D. Details of Proposed Benchmark: NAS-Bench-Macro
Meaning of NAS-Bench-Macro. The key challenge of the one-shot NAS algorithm lies in the evaluation and ranking

reliability of the supernet, which can be reflected by the ranking correlation between the evaluation performances of all
architectures on supernet and their actual performances. There are already several NAS benchmarks for the DARTS-like
micro search space. However, currently, there is no (as far as we know) public benchmark for one-shot macro search space
that provides performances of all networks by retraining from scratch. Therefore, we construct NAS-Bench-Macro with
the controlled size of the search space for the toy experiment of verifying our method’s effectiveness in terms of searching
efficiency and performance. Indeed, we construct NAS-Bench-Macro with the knowledge from MobileNetV2 search space
but remove 7×7 convolution for simplifying.



Table 5. The operation candidates for the MobileNetV2-like building blocks used in Table 4. ”ID” denotes an identity mapping.
block type expansion ratio kernel SE
MB1 K3 1 3 no

ID - - -
MB3 K3 3 3 no
MB3 K5 3 5 no
MB3 K7 3 7 no
MB6 K3 6 3 no
MB6 K5 6 5 no
MB6 K7 6 7 no

MB3 K3 SE 3 3 yes
MB3 K5 SE 3 5 yes
MB3 K7 SE 3 7 yes
MB6 K3 SE 6 3 yes
MB6 K5 SE 6 5 yes
MB6 K7 SE 6 7 yes

D.1. Details of search space on NAS-Bench-Macro

The macro structure of our search space is presented in Table 6.

Table 6. Macro structure of search space on NAS-Bench-Macro.
n input block channel stride
1 32× 32× 3 3× 3 conv 32 1
2 32× 32× 32 Choice Block 64 2
3 16× 16× 64 Choice Block 128 2
3 8× 8× 128 Choice Block 256 2
1 4× 4× 256 1× 1 conv 1280 1
1 4× 4× 1280 global avgpool - -
1 1280 FC 10 -

D.2. Statistics on CIFAR-10 training results

We analyze the distribution of parameters, FLOPs, and accuracies of all architectures in NAS-Bench-Macro, which are
illustrated in Figure 7. From the results, we can infer that, although the FLOPs and parameters are distributed uniformly
in the search space, but the accuracy performs differently, which might because when the capacity of model increases to
a saturated level, the increment of capacity will not have remarkable performance increment; so the accuracies of a large
number of architectures lie in a small range, this makes the NAS methods hard to rank those architectures accurately.
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Figure 7. Histograms of architectures in NAS-Bench-Macro w.r.t. (a) Params, (b) FLOPs, and (c) ACC.



D.3. Rank correlation of parameters and FLOPs with accuracies on NAS-Bench-Macro

We measure the rank correlation between parameters and accuracies, FLOPs and accuracies, respectively. The results
summarized in Table 7 show that the FLOPs has higher rank correlation coefficients than parameters. It indicates that the
increment of FLOPs contributes more to accuracy than increasing parameters.

Table 7. Rank correlations of parameters and FLOPs with accuracies on NAS-Bench-Macro.
type Spearman rho (%) Kendall tau (%)

params 31.81 21.76
FLOPs 66.09 55.60

D.4. Visualization of best architecture

We visualize the best architecture of our NAS-Bench-Macro on CIFAR-10 dataset in Figure 8. The visualization shows
that the architecture with the highest performance on CIFAR-10 tends to choose more large blocks (MB6 K5); however, an
Identity block on the last layer is used probably for easing the optimization pressure and decreasing the total receptive field.
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Figure 8. The best architecture on CIFAR-10 with 93.13% test accuracy, 2.0M parameters and 85.2M FLOPs.

E. Details of Rank Correlation Coefficient
In Section 4.1 and Section D.3, we rank the evaluation results of architectures on various validation sets with 1,000 and

50,000 samples. The obtained rankings are denoted as r and s, respectively. To study the ranking consistency, we evaluate
the correlation coefficient between them. Two metrics with different focuses are used, including the Kendall τ [15] and the
Spearman ρ [21] correlation coefficient.

Firstly, the Kendall τ correlation coefficient focuses on the pairwise ranking performance. Considering a pair of index
i and j such that i < j, if we have either both ri > rj and si > sj or both ri < rj and si < sj , the sort order of
(ri, rj) and (si, sj) agree, and pairs (ri, si) and (rj , sj) are said to be concordant. Otherwise, they disagree and the pairs
are disconcordant. With the concordant and disconcordant pairs, we can formally define the Kendall τ correlation coefficient
by

τK =
Nconcordant −Ndisconcordant

Nall
, (10)

where Nconcordant and Ndisconcordant are the numbers of concordant and disconcordant pairs, respectively, and Nall =

(
n

2

)
=

n(n− 1)

2
is the total number of possible pairs out of n overlapped elements. For efficient calculation, we can reformulate

(10) into an explicit expression form:

τK =
2

n(n− 1)

∑
i<j

sign(ri − rj) · sign(si − sj), (11)

where sign(·) is the sign function.
Secondly, the Spearman ρ correlation coefficient aims to evaluate to what degree a monotonic function fits the relation-

ship between two random variables. If we consider r and s as two observation vectors of the random variables r and s,
respectively, the Spearman ρ correlation coefficient can be calculated with the Pearson correlation coefficient:

ρS =
cov(r, s)

σrσs
, (12)



where cov(·, ·) is the covariance of two variables, and σr and σs are the standard deviations of r and s, respectively. In our
experiment, the ranks are distinct integers. Therefore, Eq. (12) can be reformulated as:

ρS = 1−
6
∑n

i=1(ri − si)2

n(n2 − 1)
, (13)

where n = 1000 is the number of overlapped elements between r and s.

F. More Ablation Studies
F.1. Comparison between different training epochs on supernet

In one-shot NAS, supernet as a performance evaluator highly correlates to the search performance. The more converged
the supernet is, the more confident it will be on ranking subnets. However, increasing epochs of training also increase the
computation cost; thus, we investigate the difference between different training epochs in this section. Concretely, we conduct
experiments using our method with different training epochs on ImageNet, and measure their average validation accuracies
and the corresponding train-from-scratch test accuracies of obtained architectures. The experiments are implemented with
330M FLOPs budget, and we search 20 subnets for each experiment.

20 40 60 80 100 120 140 160
Supernet training epochs

20

30

40

50

60

Ac
cu

ra
cy

 (%
)

76.4

76.5

76.6

76.7

76.8

76.9

77

Ac
cu

ra
cy

 (%
)

Validation accuracy
Top-1 accuracy

Figure 9. The Top-1 accuracy and average validation accuracy of searched architectures with different training epochs on supernet.

From the results illustrated in Figure 9, we find the average validation accuracy of searched structures benefits from the
increase of training epochs, and it almost achieves the peak after training epochs N = 120; moreover, we can find that when
the training epochs N = 60, the accuracy of obtained architecture is similar to the one with N = 120.



F.2. Effect of the threshold constant nthrd
In MCT-NAS, the proposed hierarchical node selection aims to re-explore the less-visited nodes and evaluate the subnets

more accurately with the defined threshold constant nthrd. In detail, if the average number of visits of nodes in a layer is
larger than nthrd, we think it is promising to its reward, and thus the optimal node can be sampled with equation Eq. (6) and
Eq. (9). To investigate the effect of the threshold constant nthrd to the validation accuracy of searched subnets, we conduct
experiments to search with different nthrd on the same trained supernet of 330M FLOPs budget. In detail, we search 20 paths
with different nthrd and record the average validation accuracy as Figure 10.
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Figure 10. The validation accuracy of searched architectures with different threshold constant nthrd.
Figure 10 shows that the larger nthrd leads to higher average validation accuracy of searched structures. Concretely, the

accuracy of searched paths gradually increased as nthrd growing larger, which means that our proposed hierarchical node
selection promotes to select for better paths. In addition, the performance tends to be stable when nthrd grows larger than 6,
which implies nthrd = 6 is sufficient to search for optimal paths.

F.3. Trade-off between search number and nthrd

During the search, the increments of search number and nthrd both boost the search performance. However, under a
certain upper limit of search cost, the search number should be in inversely proportional to the threshold constant nthrd.
Therefore, for a better trade-off between search number Sn and nthrd, we conduct experiments with different combinations
of Sn and nthrd, which hold that

Sn × nthrd = C (14)

where C is the target search cost coefficient, we implement the search with C = 120 on the same trained supernet and report
the average validation accuracy of searched architectures as in Figure 11.

1 2 3 4 6 10 12 20
nthrd

57.5

57.6

57.7

57.8

57.9

Ac
cu

ra
cy

 (%
)

Validation accuracy

Figure 11. Average validation accuracy of searched architectures with different nthrd under the sane search cost.

In detail, we notice that when nthrd is small, the performance of the searched structure will increase with nthrd growing
larger; this is because a larger nthrd promotes selecting nodes in MCT more accurately. Therefore, the performances of
searched structures will be closer to the optimal one in the search space. However, when nthrd goes beyond 6, the accuracy
of selected structures tend to decrease slightly; since with a default search budget, larger nthrd leads to a smaller search
number, and thus it may hinder the search for the optimal structure.



F.4. Effect of MCT-NAS in supernet training

As illustrated in Algorithm 2, we investigate two kinds of warm-ups in MCT-NAS, i.e., warm up of supernet and warm up
of MCT. Besides, to investigate the ratio of iterations for these two terms (i.e., WS and WM ), we first conduct experiments
with WS by setting WM to 0, i.e., we randomly uniform sample paths to update supernet and then select paths by FLOPs
reduction and start to update MCT, as the blue line shows in Figure 12. In detail, we achieve the best performance when WS

is set to 0.5. Afterward, we investigate the effect of WM with WS set to 0.5, as the red line shows in Figure 12. With WS set
to 0.2 (i.e., 70% of training epochs), our searched structures achieve the best performance. As a result, with 50% of overall
training epochs, our supernet can effectively help to rank the performance of different structures; and then with 20% training
epochs, MCT is being well initialized and can be leveraged to effectively select paths in combination with UCT function (as
defined in Eq. (6), (8)).
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Figure 12. Effect of MCT-NAS in supernet training.

F.5. Effect of FLOPs reduction and updating MCT in training

To examine the effect of FLOPs reduction and updating MCT, we implement supernet training under different settings of
the proposed strategies in training. The detailed results can be referred to as Table 8.

Table 8. The performance gain of each part in MCT-NAS with 330M FLOPs on MobileNet search space.
Training Searching Retraining

Uniform FLOPs Update MCT UCT Node Evolutionary MCTS Hierarchical Top-1 Top-5Sampling Reduction in Training Search Communication Search Search Updates
X X 75.94% 92.89%
X X X 76.44% 93.15%
X X X X 76.49% 93.19%
X X X X 76.54% 93.23%
X X X X X 76.65% 93.34%
X X X X 76.21% 93.11%
X X X X X 76.35% 93.17%
X X X X X X 76.62% 93.32%
X X X X X X X 76.94% 93.37%

In detail, we can see that with MCT sampler, FLOPs reduction (updating MCT in training) can lead to a 0.05%(0.1%)
improvement on Top-1 accuracy (3-th and 4-th row in Table 8). Moreover, when use both strategies of FLOPs reduction and
updating MCT in training (5-th row in Table 8), the performance of searched results can be boosted by 0.21%; Since with
FLOPs Reduction, each sampled subnet is within the FLOPs budget, and thus can help to efficiently update MCT.



G. The Calculation of Search Cost in MCT-NAS
In this paper, we propose a hierarchical node selection method, which involves additional computation cost. For an

accurate and fair comparison with other NAS methods, we calculate the total computed image number for the replacement of
the search number. Many methods leverage the validation dataset [9, 35] (split from training) with 50k pictures to evaluate
each path. However, in MCT-NAS, since we evaluate each path with a single batch of pictures, the number of pictures
required for selecting a proper path is formulated as follows

Npath = bs× nthrd ×
L∑

i=1

|Oi| (15)

where bs represents the batch size in search, and |Oi| indicates the number of candidate operations in layer i. Therefore, with
bs = 128, nthrd = 6, L = 21, and |Oi| = 13, each path in MCT-NAS amounts to 5× search cost compared to other search
methods.

H. Visualization of Searched Architectures
We visualize the searched architectures by our MCTS-NAS method as Figure 13. In detail, we find that the searched

optimal structures have the following three characteristics:

1. In the kernel level, the optimal structure generally tends to use more 5×5 or 7×7 convolutions at the layers close to the
last layer, and the last layer is always with 7×7 kernel size.

2. In the width level, the last few operations of the searched structure are more likely to use a large expansion ratio, which
is more evident with a larger FLOPs budget (e.g., our 440M FLOPs structure uses an expansion ratio of 6 for the last 10
consecutive layers).

3. When the network budget is insufficient (i.e. 330M and 280M), the searched structure generally tends to use more ID
operations at the layers close to the first layer to reduce FLOP consumption through fast downsampling.
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Figure 13. Visualization of architectures obtained by MCT-NAS in Table 2.


