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1. Quantitative Studies
We present the complete results of our experiments us-

ing both the mR@K[2] and the R@K[3] metrics in Table 1.

Visual Genome. VCTree, Motif and IMP models, suf-
fer a small drop in regular R@K [3] performance when
trained using the energy-based loss. This can be attributed
to the heavy-trailed distribution of Visual Genome dataset
[1]. Our model predicts granular and informative rela-
tions which get penalized on the R@K metric due to biased
ground truth annotations. When comparing the mR@K
metric [2] our model fares significantly better. For an un-
biased scene graph generation framework such as VCTree-
TDE, our model is able to improve on both the mR@K and
the R@K metrics. We plot the difference in predicate level
R@100 performance (sorted in descending order of sam-
pling fraction) of a Motif model trained using the energy-
based loss and the cross-entropy loss in Figure 1, along with
the sampling fractions of the relations in the visual genome

dataset in Figure 2. We observe that for generic relations
such as on with a large number of training samples, the
baseline model has slightly higher recall. However, gran-
ular relations with a smaller number training samples have
significantly higher recall rates.
GQA. We observe an almost consistent improvement in
both R@K and mR@K. This is primarily due to remov-
ing the frequency bias component which leads to relatively
unbiased predictions. We plot difference in predicate level
R@100 performance of the energy-loss based model and
the cross entropy based model in Figure 3 and the corre-
sponding sampling fractions of the relations in Figure 4.
Note that the sampling fractions in Figure 4 were plotted
using a log-scale on the y-axis for clarity. To keep the vi-
sualization simple, we do not plot relations where both the
energy model and the baseline model have zero recall. We
observe a similar trend where our model performance is
comparable to baseline on relations with more labels and
significantly better on relations with lesser annotations.

PredCls SGCls SGDet

R@K mR@K R@K mR@K R@K mR@K

Dataset Model Method @20 @50 @100 @20 @50 @100 @20 @50 @100 @20 @50 @100 @20 @50 @100 @20 @50 @100

Visual
Genome

VCTree CE 59.82 65.93 67.57 13.07 16.53 17.77 41.49 45.16 46.1 8.5 10.53 11.24 24.9 32.02 36.3 5.31 7.16 8.35
EBM 57.31 63.99 65.84 14.2 18.19 19.72 40.31 44.72 45.84 10.04 12.54 13.45 24.21 31.36 35.87 5.67 7.71 9.1

Motif CE 58.56 64.38 67.13 12.45 15.71 16.98 35.95 39.18 39.96 6.95 8.58 9.05 25.62 32.97 37.41 5.07 6.91 8.12
EBM 58.39 65.19 67.33 14.17 18.02 19.53 35.65 39.16 40.04 8.18 10.22 10.98 24.29 31.74 36.29 5.66 7.72 9.27

IMP CE 54.34 61.05 63.06 8.85 10.97 11.77 34.02 37.39 38.26 5.4 6.4 6.74 16.34 23.64 28.71 2.2 3.29 4.14
EBM 54.61 61.49 63.49 9.43 11.83 12.77 34.03 37.24 38.09 5.66 6.81 7.17 18.14 25.86 31.13 2.78 4.23 5.44

VCTree-TDE CE 40.12 50.83 54.91 16.3 22.85 26.26 26 33.03 35.97 11.85 15.81 17.99 13.97 19.43 23.34 6.59 8.99 10.78
EBM 41.62 51.22 54.29 19.87 26.66 29.97 29.53 36.49 38.92 13.86 18.2 20.45 14.66 20.55 24.74 7.1 9.69 11.6

GQA

Transformer CE 34.68 50.86 58.46 1.17 2.48 3.69 11.05 14.86 16.42 0.54 0.97 1.29 - - - - - -
EBM 35.61 51.88 59.5 1.28 2.94 4.71 12.14 16.12 17.66 0.68 1.32 1.77 - - - - - -

Motif CE 32.73 47.51 54.32 0.89 1.83 2.75 11.34 15.31 16.93 0.49 0.87 1.18 - - - - - -
EBM 34.9 50.66 57.98 1.04 2.29 3.49 11.64 15.74 17.39 0.57 0.9 1.26 - - - - - -

IMP CE 29.4 42.44 48.49 0.5 0.95 1.34 11.87 15.82 17.44 0.28 0.5 0.65 - - - - - -
EBM 29.85 43.3 49.13 0.57 1.07 1.5 11.64 15.47 17.02 0.34 0.58 0.76 - - - - - -

Table 1: Quantitative Results. Table shows the R@K and mR@K comparison between models trained using the proposed
framework and energy based formulation
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Figure 1: This figure plots the relation wise difference in Recall@100, sorted by descending order of sampling fractions,
between a Motif model trained using the proposed energy-based framework and a similar model trained using the standard
cross-entropy based framework. The green (red) bars correspond to a relative improvement (regression) in the performance
of the energy-based model. We note that using our proposed methodology, we obtain large improvements in the performance
of relations with relatively less data. The slight degradation in performance on the commonly occurring relations such a on
is due to relatively unbiased/granular predictions from energy based models.
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Figure 2: Figure shows the sampling fraction of the different relations in the Visual Genome dataset.
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Figure 3: This figure shows the performance difference in relation wise recall on a Motif model trained using an energy loss
and using a cross-entropyloss on the GQA dataset sorted in descending order of sampling fractions. We observe that for
commonly occurring relations in the dataset, the performance of the baseline and proposed framework is comparable. As we
move to the left, we observe larger improvements in performance from energy-based training.
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Figure 4: This figure shows the sampling fraction for relation labels in the GQA dataset. The graph is plotted using a log-scale
on the y-axis due to a large disparity in the sample fractions. The linear downward trend depicted in the plot corresponds to
an exponential reduction in the occurrence of the less frequently occurring relations.
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