Deep Video Matting via Spatio-Temporal Alignment and Aggregation

Supplementary Material

1. ST-FAM

In temporal feature alignment module (TFA), we apply
deformable convolution layer to align features. Figure 1
shows the implementation. For simplicity, we denote the
encoded features extracted from the resblocks at timestamp
t as F;. To reduce computational overhead, before sending
the encoded feature to TFA, we apply a 1 x 1 convolution
layer to reduce their channel to 64. Then we perform two
3 x 3 convolution layers on the concatenation of J; and
Fit1 (i € [—n,n]). The learned features are split into offset
and mask, which are sent to a deformable convolution [3]
layer. After we have obtained 2n + 1 aligned features for
all frames, a temporal feature fusion module (TFF) with
channel- and spatial- attention is applied on these aligned
features for aggregation. Figure 2 shows the structures of
our channel- and spatial- attention used in TFF. n is set to 2
in our experiments.

2. Experiments
2.1. Temporal Aggregation

In this ablation study, we investigate the effect of tem-
poral aggregation by varying the number n of neighbor-
ing frames. Note that the actual number of input frames is
2n + 1. To aggregate more neighboring frames within lim-
ited memory and shorten the training time, we use ResNet-
34 [1] as our encoder, and train all models for 60 epochs
with a batch size of 1. Table 1 shows the results. The per-
formance is promoted as we increase the number of neigh-
boring frames. By integrating more neighboring frames, our
model can have a better view of objects’ motion to gener-
ate more precise predictions. With the number continues to
increase, the performance of our model holds steady as the
model has learned sufficient short-term temporal informa-
tion from neighboring frames.

2.2. Temporal Fusion Network

In this ablation study, we compare different temporal fu-
sion networks with our ST-FAM, including naive-fusion,
cross-attention-fusion and flow-fusion. Their structures are
described as following.

Naive-fusion. Given F; and Fiy; (i € [—n,n]), naive-
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Figure 1. Architecture of deformable convolution in TFA. c is 64.

n 1 2 3 4 5 6
SAD 48.72 4698 46.29 46.30 46.34 46.32
dtSSD 19.24 18.59 18.17 18.10 18.09 18.10

Table 1. Experimental results of temporal aggregation.

fusion takes their concatenation as input, and applies two
3 x 3 convolutional layers to generate the aggregated tem-
poral feature.

Cross-attention-fusion. Similar to the cross-attention layer
used in our trimap propagation network, in this model,
we apply a cross-attention layer to enhance F; by Fiy;
(i € [-n,n]). Figure 3 shows the implementation, where
c is also reduced to 64 and n is set to 2 in our experiments.
The 2n+1 enhanced features are then concatenated and uti-
lized in the decoder. Experimental results demonstrate the
effectiveness of cross-attention in temporal aggregation at
the expense of large computational overhead which limits
extension to more neighboring frames.

Flow-fusion. Different from the aforementioned fusion
methods that encode temporal information by integrating
multi-frame features, flow-fusion incorporates temporal in-
formation by the concatenation with optical flow. Specif-



Figure 2. Left: channel attention. Right: spatial attention. GAP:
global average pooling. CMP: channel maximum pooling. CAP:
channel average pooling. cis (2n + 1) x 64 and n is the number
of neighboring frames used in the paper.

Diff Grad KL TC SAD MSE dtSSD
v - - - 4282 0015 1642
v v - - 4196 0.015 16.24
v v v - 4147 0.014 1585

v v v v 4091 0.014 15.11

Table 2. Experimental results of our video matting framework with
different losses. “Diff”, “Grad”, “KL”, “TC” respectively repre-
sents difference loss, gradient loss, KL-divergence loss and tem-
poral coherence loss.

ically, this method applies an off-the-shelf flow estimation
network PWC-Net [2] on two RGB frames at time ¢ and ¢+
(i € [-n,n]), and generates corresponding optical flows.
Afterward, all flows are concatenated with the decoded fea-
tures to offer motion information of foreground objects and
background scenes. However, the promotion is limited due
to the ambiguous flow estimation within regions comprised
of many semi-transparent/transparent pixels.

2.3. Losses

In the training stage, compared to former methods, we
apply multiple losses to optimize our model. We conduct
several experiments to illustrate their effectiveness. We take
the model with different losses, including alpha prediction
loss and composition loss as the baseline, and progressively
add gradient loss, KL-divergence loss and temporal coher-
ence loss. Table 2 tabulates the experimental results. The
gradient loss can guide our model to pay attention to diffi-
cult structures or patterns leading to a 0.86 SAD improve-
ment. Moreover, the KL-divergence loss minimizes the dis-
crepancy between the distribution of predictions and targets,
which further improves the performance by 0.49.
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Figure 3. Architecture of Cross-attention-fusion. c is 64.
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