
Supplementary Material
Indoor Panorama Planar 3D Reconstruction via Divide and Conquer

Contents
1 . Ground-truth H&V-plane annotation 1

1.1 . Local analysis 1
1.2 . Horizontal planes extraction 1
1.3 . Vertical planes extraction 2

2 . Relation with panorama room layout 2
3 . Detailed network architecture 2
4 . Visualization of yaw-rotation ambiguity in 360° im-

ages 2
5 . V-planar orientation grouping 3
6 . More quantitative comparison of intermediate ver-

sion 3
7 . More qualitative results reconstructed by our

method. 3
8 . Qualitative comparisons with baselines 3

1. Ground-truth H&V-plane annotation
This section provides more details about the extraction of

HV-planes from ground-truth depth.

1.1. Local analysis

The goal is to classify each pixel into ‘H-pixel’, ‘V-pixel’,
or ‘other’ for later HV-plane extraction. The same rule is
generally applied to all pixels, so we describe how we clas-
sify a pixel p for simplicity as follows. We relocate the
world origin to the 3D coordinate of point p (same pro-
cess applied to other points); the z-axis is aligned with
gravity, and all the 3D points from the same image col-
umn are on the plane formed by y-axis and z-axis. Let
(0, yt, zt) and (0, yb, zb) be the 3D coordinates from the
top and bottom adjacent pixels respectively. Let d be the
depth value of pixel p. We calculate the following informa-
tion:
TH ← min(d · 5, 40) {threshold for ‘H’}
TV ← 90− TH {threshold for ‘V’}
θt ← arctan2(|zt|, |yt|) {degree in range [0◦, 90◦]}
θb ← arctan2(|zb|, |yb|) {degree in range [0◦, 90◦]}
typet ← thresholdHVO(θt, TH , TV)
typeb ← thresholdHVO(θb, TH , TV)

TH and TV are depth-dependent thresholds (the farther, the
more tolerant). The procedure ‘thresholdHVO’ is defined as

if θ < TH and max(|zt|, |zb|) < 0.1 then
type← ‘H’

else if θ > TV and max(|yt|, |yb|) < 0.1 then
type← ‘V’

else
type← ‘O’

end if
We then classify the pixel based on the states of typet
and typeb using the rule depicted in Table 1. The ‘TBD’
in Table 1 needs to be further determined by θt and
θb:

if typet = ‘V’ and typeb = ‘H’ then
if 90− θt < θb then

return ‘V-pixel’
else

return ‘H-pixel’
end if

else if typet = ‘H’ and typeb = ‘V’ then
if θt < 90− θb then

return ‘H-pixel’
else

return ‘V-pixel’
end if

end if

typet / typeb ‘H’ ‘V’ ‘O’
‘H’ ‘H-pixel’ TBD ‘H-pixel’
‘V’ TBD ‘V-pixel’ ‘V-pixel’
‘O’ ‘H-pixel’ ‘V-pixel’ ‘other’

Table 1: Type of a pixel according to the relationship with
its top and bottom adjacent pixels

Finally, we use connected component (CC) analysis on ‘H-
pixel’ and ‘V-pixel’, and re-assign small CC into ‘other’.

1.2. Horizontal planes extraction

A horizontal plane has only one degree of freedom that
can be parameterized by the signed distance (for up/down in
3D) to the camera height. We identify horizontal planes in a
manner similar to non-maximum suppression:

1. Using linear search to find an H-plane covering the

1

largest number of remaining H-pixels within 5cm;

2. Removing any connected component (CC) on the image
that contains fewer than 1,000 pixels (i.e. ≈ 0.2% of
the image size);

3. Masking out inlier H-pixels.

The process iterates until no H-plane can be found. The
extracted H-planes are refined by reassigning all H-pixels to
their nearest H-planes and recalculating the parameters of
H-planes based on new inlier H-pixels.

1.3. Vertical planes extraction

A vertical plane has two degrees of freedom, which can
be characterized by ~n = [x y 0] = o · [cos θ sin θ 0]—the
unit surface normal [cos θ sin θ 0] scaled by the plane offset
o. Similar to H-plane extraction, we apply the following
process:

1. RANSAC finding a plane ~n that covers the largest
number of V-pixels within a threshold T = min(o ·
0.05, 0.2); A 3D point is said to be an inlier if the
distance to the plane is less than the threshold;

2. Keeping only the largest CC as a V-plane instance since
the detected plane ~n by RANSAC extends infinitely in
3D and could cover multiple non-connected planes.

3. Masking out inlier V-pixels.

The process iterates until the largest CC contains fewer than
1,000 pixels. The extracted V-planes are refined by reassign-
ing border pixels of instances to their nearest V-planes. This
step could cut an instance into different CCs; only the largest
CC of the instance remains, and the other smaller-sized CCs
are reassigned to the majority of their neighbors. Finally,
V-plane parameters are refined by solving the least-squares
based on the new inliers.

2. Relation with panorama room layout
The room layout reconstruct the highest-level structure

of a room, which is consists of only a few facades and the
result is up to a scale. Besides, most of the room layout
reconstruction methods currently only consider one-floor-
one-ceiling model. In plane evaluation metrics, many factors
can even makes the detected layout facades to be counted
as false positive, e.g., planes of furniture or objects taking
a large amount of pixels of a wall, beam, column, gates or
doors to another area.

3. Detailed network architecture
The architecture for pixel-level feature extraction is de-

picted in Fig. 1. We employ ResNet101 as our backbone
network, which provides features in four different out-
put stride. We use ConvBlock to denote a sequence of

ResNet101

c256/s4

c512/s8

c1024/s16

c2048/s32

c128/s4

c128/s8

c128/s16

c128/s32

c128/s64

c64/s2

Conv3x3, BN, ReLU

BilinearUp

BilinearUp, Conv3x3, BN, ReLU

Identity

MaxPool

Summation Concatenation

Figure 1: Detailed network architecture employed to extract
per-pixel features. The “cX/sY ” indicates that the feature
tensor has X latent channels with spatial stride Y .

Conv3x3,BN,ReLU. Each backbone feature tensor is re-
duced to 128 latent channels by two ConvBlocks, where
the intermediate features are summed with the upsampled
coarser-scale features to capture a longer range of context.
We also adding one extra level by MaxPool. Finally, from
coarse to fine levels, the features are upsampled, refine by
ConvBlock and concatenated with the finer level features.
The overall encoder-decoder network produce a pixel-level
feature tensor at output stride 2 with 64 latent channels,
which is then followed by different Conv1x1 layer to esti-
mate each modality for HV-planes reconstruction.

4. Visualization of yaw-rotation ambiguity in
360° images

We visualize the effect of camera yaw rotation on V-
plane parameters in a 360° image in Fig 2, where planes are
colored according to the angles of the plane orientations. We
can see that values of the standard plane representation vary
with different yaw rotations of 360° camera. This property,
however, is inconsistent with the fact that the convolutional
neural network is translation-invariant and therefore less
aware of the yaw rotation.

To address the yaw ambiguity effectively, we propose
to re-parameterize the ground-truth plane orientation θ∗i of
each pixel i into residual form with respect to the pixel yaw
viewing angle ui such that it is invariant to the 360° camera
yaw rotation:

θ′
∗
i = θ∗i − ui . (1)

We show the same scene as Fig 2 but with our camera yaw
invariant plane representation in Fig 3, where the ground-
truth orientation is now camera yaw-invariant.

Figure 2: RGB and ground-truth V-planes colored by the
angles of plane orientations. The left and right figures are
two views of the exact same scene with different camera yaw
rotations.

Figure 3: The proposed camera yaw-invariant plane repre-
sentation.

5. V-planar orientation grouping
Our proposed plane instance segmentation module is

geometry-aware. More specifically, we group all pixels with
similar plane orientations in the first stage of the plane in-
stance segmentation process. We describe below how we
instantiate the grouping process for pixels classified as ‘V-
planar’. Let θi ∈ [−π, π] denote the reconstructed V-plane
orientation in radian of a V-planar pixel with index i. We
discretize all {θi | pixel i is V-planar} into 360 bins. Note
that the histogram is circular, where the first bin is adjacent
to the last bin. We then find all prominent peaks on the his-
togram with two criteria: i) the vote is larger than any bins
within the nearest 50 bins, and ii) it has at least 100 votes.
V-pixels are assigned to their nearest peak to form surface
orientation groups.

6. More quantitative comparison of intermedi-
ate version

We show more intermediate version of our method in
Table 2. Our based method (w/o yaw-inv, w/o ori-gp) shows

Method Segmentation Quality Recall↑
ARI↑ VI↓ SC↑ Pixel Plane

PlaneAE [4] 0.765 1.536 0.733 0.520 0.341
w/o yaw-inv
w/o ori-gp 0.762 1.555 0.734 0.542 0.360

w/o yaw-inv 0.764 1.542 0.738 0.545 0.369
w/o ori-gp 0.762 1.554 0.732 0.619 0.417
full 0.768 1.514 0.742 0.627 0.430

Table 2: More quantitative results on Stanford2d3d of
our method’s intermediate version. A strong baseline—
PlaneAE—is also shown for comparison. yaw-inv: the yaw-
invariant representation. ori-gp: the orientation grouping as
a pre-filtering before mean shift.

slightly better result on pixel-recall and plane-recall com-
paring to PlaneAE, which could be due to the difference in
model architecture and the output modalities for represent-
ing plane parameter. By applying the ori-gp, we can see
consistent improvement on segmentation quality, especially
when it works with the yaw-inv (the quality of ori-gp depend
on the quality of the planar yaw-angle estimation). Further,
adding yaw-inv to our system leads to a significant improve-
ment on pixel-recall and plane-recall which considering not
only the segmentation quality but also geometry quality.

7. More qualitative results reconstructed by
our method.

We show more visual results on the two real-world
dataset—Stanford2D3D [1] dataset and Matterport3D [2]
dataset—in Fig. 4, Fig. 5 and Fig. 7.

8. Qualitative comparisons with baselines
We compare more qualitative results of the two baselines—

PlaneRCNN [3] and PlaneAE [4]—and our method in Fig. 6.
The first column shows input RGB and ground-truth plane
instance segmentation. The second to the fourth columns
respectively show results reconstructed by PlaneRCNN [3],
PlanarReconstruct [4], and our method. For each scene, we
show the planar depth error (clipped to 3 meters) in the top
row and the predicted plane instance segmentation in the
bottom row. We use red circles to highlight obvious errors.

Fig. 4 5 6 7 are in the next few pages.

Figure 4: Visual results on Stanford2D3D [1] validation set. The first to the fourth columns show input RGB, plane instance
segmentation detected by our method, planar depth error, and snapshot in the reconstructed 3D planar model.

Figure 5: Visual results on Matterport3D [2] test set. The first to the fourth columns show input RGB, plane instance
segmentation detected by our method, planar depth error, and snapshot in the reconstructed 3D planar model.

� �
*7 3ODQH5&11 3ODQH$(RXUV

Figure 6: Qualitative comparisons with baselines. (See main text for details.)

Figure 7: 3D mesh visualization from our approach.

References
[1] Iro Armeni, Sasha Sax, Amir Roshan Zamir, and Silvio

Savarese. Joint 2d-3d-semantic data for indoor scene under-
standing. CoRR, abs/1702.01105, 2017. 3, 4

[2] Angel X. Chang, Angela Dai, Thomas A. Funkhouser, Maciej
Halber, Matthias Nießner, Manolis Savva, Shuran Song, Andy
Zeng, and Yinda Zhang. Matterport3D: learning from RGB-D
data in indoor environments. In 2017 International Conference
on 3D Vision, 3DV 2017, Qingdao, China, October 10-12,
2017, pages 667–676, 2017. 3, 4

[3] Chen Liu, Kihwan Kim, Jinwei Gu, Yasutaka Furukawa, and
Jan Kautz. PlaneRCNN: 3d plane detection and reconstruction
from a single image. In IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2019, Long Beach, CA, USA,
June 16-20, 2019, pages 4450–4459, 2019. 3

[4] Zehao Yu, Jia Zheng, Dongze Lian, Zihan Zhou, and Shenghua
Gao. Single-image piece-wise planar 3d reconstruction via
associative embedding. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2019, Long Beach, CA,
USA, June 16-20, 2019, pages 1029–1037, 2019. 3

