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In this supplementary material, we provide a more de-
tailed and explicit explanation of our dataset used for ex-
perimental evaluation. We also provide more statistics of
our experimental results and additional visualizations.

1. Dataset Overview

The original input of our method is composed by three
different parts, namely 3D models of the real scenes, the ar-
eas of interest for each individual scene, and cameras with
poses (extrinsic parameters) and predefined intrinsic param-
eters. In this section, we present the dataset for our exper-
iments and define the hyper-parameters for pre-processing
before the camera view prediction module in detail.

1.1. Models

Our dataset consists of CAD models of more than 300
real stores. These CAD models were first artificially built
by 3D designers based on the actual layouts of these scenes.
These CAD models were then compared against actual 3D
reconstructions of these scenes to justify their accuracy. The
objects in each model include large objects such as walls,
shelves, counters, to small objects such as ovens and lamps.
We involve these high-resolution models as a substitute to
the unrealistic shapes of reconstructions from multi-view
stereo (MVS) methods to narrow the gap between the exper-
imental evaluation and the practical performance and im-
prove the accuracy of our evaluation metrics. For simplic-
ity, in the follow renderings of the coverage task we only
keep the geometry of each object, and no texture mapping
is included.

Figure 1 provides visualizations of 60 store models ren-
dered from the top view. The sizes of rendered models have
been normalized for the convenience of visualization. The
unoccupied space including corridors and empty rooms is
rendered dark and the occupied space including as walls and
shelves is rendered light. The core module in the layout of
a store is the aisle, the region of which is indicated by the
largest connected dark component (see Figure 2). Shelves
are arranged inside these aisles.

An 1:1 model before scaling typically has an aisle area
of 20 meters2 to 60 meters2 and a height of 3 meters to 3.5
meters. Shelves are 1.5 meters to 2 meters in height and
corridors are at least 1m in width. For discretization of the
scene model, we choose the 85× 85× 7 grid to reduce the
space complexity of training and testing of our view predic-
tion network while guaranteeing that the topological struc-
tures of the scenes are unchanged.

1.2. Areas of Interest

Each CAD model is associated with a set of areas for
detection (or to be covered). These areas can accumulate
along the aisles, on shelf sides, or at the entrances, which
are in practice the critical areas to be surveilled by cam-
eras in a store. The areas of interest in raw data are marked
as coarse bounding boxes in the design, e.g., one bounding
box for each shelf or one bounding box for each corridor. To
create a general representation for both the occupied areas
and the unoccupied, and also to speed up the process of gen-
erating the ground truth of coverage from camera position
candidates, we discretize each area by a 3D grid into a set of
entities for detection (i.e., we sample each vertex of the 3D
grid). At each vertex, we assign an entity with zero volume
and a normal direction. The normal direction n at posi-
tion (xe, ye, ze), generated inside bounding box centered at
(xb, yb, zb) is defined as n = (xe − xb, ye − yb, ze − zb).
Under this representation, we can apply the metric

s :=
∑
e∈E

max
1≤i≤n

(
wie · (cosα(θie) + δmax)− δmax

)
− λn

defined in the main paper to quantify the coverage from
each view of the camera.

In our experiments with 1:1 models, we fix the resolution
of coverage entity grid to be 20 centimeters, i.e., 20 cen-
timeters between neighboring entities. A non-opaque actor
is added to the scene for each entity for detection when ren-
dering with Unreal Engine.
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Figure 1. A subset of 60 scenes from our dataset. A scene is typically composed of aisles with shelves, a dinning section with tables and
chairs, and some other small rooms. The floor is rendered darker than other objects as they are farther from the view point. Actors for
entity detection are removed from the scenes in this figure for a clearer view. The size of each scene in the image is not proportional to its
actual size.



Figure 2. We focus on the coverage of areas of interest inside aisles
(the colored part) of the scenes in the dataset. The corridors are
colored red and the shelve are colored green.

Figure 3. This figure shows the details of a scene model and the
result of the rendering process. We consider the set of views from
a series of cameras under a single scene. The actors are rendered
as black cubes with 10% opacity in this figure.

1.3. Cameras and Visualization

The cameras used for all our experiments are fixed to
have a half angle-of-view of 45 degrees. We do not add re-
strictions to the minimum and maximum visible range since
the size of a store model is bounded (∼10 meters) in each
dimension. The height of cameras are set to adjust between
100 centimeters and 120 centimeters, which simulates the
behavior of a robot with a camera carrier on its top. Despite
our experiment setting, both the modules in our method and
rendering techniques can be generalized for different types
of cameras.

Given a series of extrinsic parameters of cameras, we
render specific views captured from these cameras. An ex-
ample of rendered views under a camera series with a high
coverage score is shown in Figure 3. The entities are ren-
dered as black cubes instead of a zero-volume vertex only
for visualization purpose and in all our experiments we fol-
low the original definition stated above to compute the cov-
erage rates and scores.

For realistic rendering in qualitative evaluation of cov-

erage, we replace cameras with green angled light sources
that share the same intrinsic(angle) and extrinsic parame-
ters. Faces in the model that are lighted by these light
sources are covered by the cameras. This visualization tech-
nique does not show the coverage of entities precisely, but
we still take the area colored by the light sources as an ap-
proximation of coverage rate and scores (Figure 4).

Figure 4. In the visualization of qualitative rendering in the main
paper, we use light sources that share the same parameters with
cameras to replace them to find the covered faces of the model.
When the visible area of one camera is cropped (the dark part of
the left figure above), we see that a part of the vision cone that is
close to the camera (the pink area in the right figure) fails to get
colored. Due to our experimental results the loss from these parts
is subtle and we still use this visualization as an approximation of
the coverage qualitatively.
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Figure 5. The average coverage ratio with respect to the number
of cameras. The ratio from our angular metric(yellow) follows the
binary visibility(red) in both global and marginal(blue) coverage.

In Figure 5 we show the increment in coverage ratio
when placing more cameras. The marginal coverage drops
to less than 5% both in the metric of binary visibility and the
angular metric with hyper-parameters. Here we manually
set the hyper-parameter δmax in the context of the camera
intrinsic configuration stated above for better visualization.

2. Ablation study for optimization near opti-
mum

To show the robustness of our method under a proper
initialization close to the solution of the Next-Best-
View(NBV) method, we present more experimental results



in this section. Note that the NBV method does not compute
an ”optimum,” and we use this word only to emphasize that
the NBV method under high-resolution grid is the state-of-
the-art method and achieves high coverage score in practice.

0.75

0.8

0.85

0.9

0.95

0 1 2 3 4

S
co

re
 r

at
io

 t
o

 m
ax

Perturbation level

Score under perturbation near optimum

Initial Optimized

Figure 6. This figure shows the experimental results of robustness
testing. The horizontal axis represents the perturbation level. The
amplitude of perturbation is proportional to the level, with level 1
corresponding to a uniformly random one within ±20cm, ±10◦.
The vertical axis represents the relative single-camera score on av-
erage. In general, our optimization reduces the loss in coverage
score brought by perturbations on camera transformations. Note
that even the optimum may not achieve the possible maximum
score since some of the entities for coverage may be generated
inside objects, and the number of cameras is limited. We do not
consider perturbation larger than level 4 as the randomness of ini-
tialization becomes too large.

Instead of implementing the NBV method on camera po-
sitioning grids with different resolutions, we consider the
more general case that camera transformations from the
NBV method on fine grids are randomly perturbed to some
extent. We apply this strategy of initialization based on two
reasons. The first one is that in the camera position dis-
cretization of NBV method, there is no rule for selecting the
origin and the block size of the grid under different scenes.
In fact, a camera sampled from a fine-grid may be inside an
object, and it is no longer valid (i.e., we cannot place a cam-
era inside a solid object). A random perturbation can reduce
the effect of these incorrect camera placements. The sec-
ond is that the amplitude of perturbation is continuous and
therefore makes the set of camera position candidates for
the NBV method continuous as well. We can densely sam-
ple the amplitude along with the perturbation for robustness
testing of our method. For this test, we fix the number of
cameras in a scene.

The result of the robustness test is plotted as in Figure 6,
with each perturbation level taking the average of a group
of 6 cases. Compared to the ground truth, the approximated
score function learned from the network smooths high-
frequency noises and helps to optimize the camera transfor-
mations to a local maximum of the approximated function.
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Figure 7. This figure shows the experimental results of the random
initialization test. The horizontal axis of both sub-figures repre-
sents the ratio between the average score of each camera under
random initialization and the possible maximum, bounded by the
total number of entities for detection in the scene. The vertical
axis shows the ratio between the scores of optimized and initial
positioning(possible maximum) above(below). Our optimization
method is expected to have better performance for worse initial-
izations.

When the perturbation is large, it is relatively more likely to
find a local optimum on the approximated score function,
which also scores high in the real case. As the initializa-
tion approaches the global optimum, it becomes harder for
optimization on an approximate function to precisely find a
local optimum on the manifold of the real function within
the neighborhood.

3. Additional experimental results for random
initialization

In this section, we extend our experiments to random ini-
tializations. Although our method outperforms the baseline
visually, as is shown in the main paper, we now provide
statistics on coverage scores under more test cases. All the
scenes are randomly chosen from our test set, and cameras
are positioned with random translation and rotation param-
eters in each scene.

Figure 7 shows the improvement in the score of each
camera when our method is applied to pose sets from ran-



dom initialization. When camera poses are randomly gen-
erated, the initial score approximately follows a bell-shaped
distribution centered around 40% to 50% of the maximum
possible score. According to the random initialization test,
we can see that even with the smooth approximate function,
there are still many local optimums distributed all over the
loss surface. As the score of an initialization gets farther
away from the global optimal, the performance gain of our
optimization increases both in absolute and relative scores.


