
A. Method of Inferring Data Representations
As discussed in Section 3.1, if we can find several rows

in the local update W that is from Grad(Bi), which is pos-
sible because of the low entanglement of Grad(Bi) across
i in FL, then we are able to infer this device’s training data
representation of class i in this layer. As ∂lj

∂bj and (rj)T

are both similar across j in one batch Bi, Grad(Bi) can be
approximated as equation 14,

Grad(Bi) =
1

|Bi|
∑
j∈Bi

∂lj

∂bj
rjT

≈

 1

|Bi|
∑
j∈Bi

∂lj

∂bj

 1

|Bi|
∑
j∈Bi

rjT


=
∂l

∂b Bi

rT
Bi
,

(14)

where ∂l
∂bBi

and rTBi
denote the average of ∂lj

∂bj and (rj)T

for j ∈ Bi, and rTBi
is the data representation corresponding

to this device’s training data of class i in this layer. If we
want to infer rTBi

from this layer’s local parameter update,

we need to seek out the unique elements in ∂l
∂bBi

. Here,

unique elements are the elements in ∂l
∂bBi

that are not, or less

entangled with other ∂l
∂bBj,j 6=i

after summation in equation 2
is executed.

A.1. Inferring features in the last layer

Let us consider the last layer of a classification model
with cross-entropy loss over a sample. Suppose r is the
data representation of the second-to-layer layer, we have

b = Wr

y = softmax(b)

l = − log yc,

(15)

where l is the loss defined on a sample and c is the sample’s
ground-truth label. y = [y1, y2, . . . , yC] denotes the output
of the softmax. Then ∂l

∂b in this layer is

∂l

∂b i
=

{
yi − 1, i = c

yi, i 6= c
(16)

As y1, y2, . . . yC are probabilities, we have yi ∈ (0, 1)
and

∑
i yi = 1. Hence, ∂l

∂b has only one negative element
on index c and the absolute value of ∂lc∂b is equal to the sum
of other elements’ absolute values. Therefore, for the last
layer, the unique element in ∂l

∂bBi
is the ”peak” element with

index i, and this ”peak” element contributes to the larger
||∇Wi||2, where∇Wi denotes the ith row of ∇W .

When the malicious server receives one local model up-
dates, it computes {||∇W1||2, ||∇W2||2, . . . , ||∇WC ||2}

and picks out the ones that are significantly larger. Then
the server successfully infer data classes on this device be-
cause these selected rows’ indexes corresponds to this de-
vice’s training data classes. For one training class i, rTBi

in
this layer can just be approximated by γ∇Wi, where γ is a
scale influences by the local training steps. The algorithm
of inferring data representations in the last layer is shown in
Algorithm 3.

A.2. Inferring features in previous layers

𝑟𝑟 𝑏𝑏 𝑏𝑏𝑏

ActivationFC
layer 𝑖𝑖

FC layer
𝑖𝑖 + 1

Figure 8. Inference process.

Generally, we need to seek out the unique elements in
∂l
∂bBi

to infer rTBi
in this layer. Let us assume we have in-

ferred the data representation of Bi in the layer after, which
is denoted as b′Bi

shown in figure 8. Specifically, b′Bi
is

the result of activation function with input as bBi
. If we

can infer rTBi
based on the access of b′Bi , plus the inferred

last layer’s data representation of Bi, then we can infer Bi’s
data representations of every linear layer in a backpropaga-
tion fashion.

Even though b′Bi
is a nonlinear transformation of bBi

,
they share the similar structure and sparsity due to the con-
sistency of most activation functions. Hence we can apply
∂l
∂b′ Bi

to approximate ∂l
∂bBi

for seeking the unique elements

in ∂l
∂bBi

. Theoretically, ∂l
∂b′ Bi

corresponds to the direction
of ∇b′Bi . Because b′Bi should retain stable structure and
sparsity in one local updating round as discussed in Sec-
tion 3.1, ∇b′Bi

should mostly appear on the elements with
larger magnitude. Therefore, the unique elements in ∂l

∂b′ Bi

should have the same indexes with the elements with larger
magnitude in b′Bi

. Since we have access to b′Bi
, we can

find M most unique elements in ∂l
∂b′ Bi

by listing the M el-
ements in b′Bi

with the largest magnitude. Then we can
infer rTBi

easily by fetching and averaging the rows of this
layer’s weight updates according to the M unique elements
indexes.

Following the above algorithm, the malicious server can
fetch the training data representation in a fully connected
layer for each data class on one device based on the data
representation in the layer after. Plus the inference of all
classes’ training data representations in the last layer, the
server is able to infer one device’s training data representa-
tions for each class it owns in every fully connected layers
in a back propagation way. The inferring process is shown
in Algorithm 4.

Algorithm 3 Data representation inference in the last layer.
Input: Local weight updates in the last layer∇W .
Output: Local training class set S; Linearly scale training data represen-

tations {r̂T
Bi
, i ∈ S} in this layer.

1: Compute ||∇W1||2, ||∇W2||2, . . . , ||∇WC ||2;
2: Pick up peaks of {||∇Wi||2} and collect their indexes as S;
3: return S, {∇Wi, i ∈ S};

Algorithm 4 Data representation inference in previous fully
connected layers.
Input: Local weight updates in this layer∇W ; Data representation b′Bi

for Bi in the following layer; M ∈ N+.
Output: Linearly scale training data representations r̂T

Bi
in this layer.

1: Select M elements in b′Bi
with the largest magnitudes and collect

their indexes as M;
2: r̂T

Bi
←

∑
k∈M
∇Wk;

3: return r̂T
Bi

;

B. Experiment Setup

Model for experiments in Section 3.2. For the in-
ferring class-wise data representation experiment, we
use the base model with 2 convolutional layers and
3 fully connected layers. The detailed architecture is
listed as Conv3-6→Maxpool→Conv6-16→Maxpool→FC–
120→FC–84→FC–10. We set kernel size as 5 and 2 for all
convolutional layers and max pooling layers respectively.

Settings for experiments in Section 3.3. For experiments
unveiling representation leakage in Section 3.3, we build a
model with one convolutional layer and one fully connected
layer. The detailed architecture is listed as Conv3-12→FC–
10. We set kernel size of the convolutional layer as 5. For
attacks, we apply the L-BFGS optimizer and conduct 300
iterations of optimization to reconstruct the raw data.

Models for two attacks in Section 6 We use LeNet for
both the DLG attack and ConvNet for GS attack. The archi-
tectures are shown in Tab. 3.

Table 3. Model architectures for DLG attack and GS attack.
DLG GS

5× 5 Conv 3-12 5× 5 Conv 3-32
5× 5 Conv 12-12 5× 5 Conv 32-64
5× 5 Conv 12-12 5× 5 Conv 64-64
5× 5 Conv 12-12 5× 5 Conv 64-128

FC–10 5× 5 Conv 128-128
5× 5 Conv 128-128

3× 3 Maxpool
5× 5 Conv 128-128
5× 5 Conv 128-128
5× 5 Conv 128-128

3× 3 Maxpool
FC–10

C. Proof of Theorem 1

Proposition 1. Let || · ||p be a sub-multiplicative norm.
||AB||p ≤ ||A||p||B||p.

With Assumption 1 and Lemma 1, the distance between
X and X ′ is:

||X −X ′||p = ||f−1(r)− f−1(r′)||p
= ||∇rf−1 · (r − r′)||p
= ||(∇Xf)

−1 · (r − r′)||p

(17)

Based on Proposition 1, we have ||C−1D||p ≥
||D||p/||C||p. Then, ||X −X ′||p is lower bounded as

||X −X ′||p ≥
||r − r′||p
||∇Xf ||p

. (18)

D. Proof of Theorem 2

Overview: Our proof is mainly inspired by [15]. Specif-
ically, our proof has two key parts. First, we derive the
bounds similar to those in Assumptions 4 and 5, after ap-
plying our defense scheme. Second, we adapt Theorem 2
on convergence guarantee in [15] using our new bounds.
Bounding the expected distance between the perturbed
gradients with our defense and raw gradients using As-
sumption 6. In FedAvg, in the t-th round, we denote the in-
put representation, parameters, and output of the single s-th
layer in the k-th device as rkt , ws

k
t , and bkt , respectively. Via

applying our defense scheme T (·), the input representation
is perturbed as r′kt . Then, the expected distance between
the perturbed gradients and raw gradients in the s-th layer
is bounded by:

E||∇F ′k(ws
k
t , ξ

k
t)−∇Fk(ws

k
t , ξ

k
t)||2 (19)

=E||∇bkt Fk(ws
k
t , ξ

k
t) · (r′kt − rkt)T ||2 (20)

≤E||∇bkt Fk(ws
k
t , ξ

k
t)||2 · ||(r′

k
t − rkt)||2 (21)

≤Λs · ε, (22)

where in Equ. (22) we use the the constraint in Equ. (8) by
setting q = 2 and Assumption 6.
New bounds for Assumption 4 with our defense. Note
that our defense scheme is only applied to the s-th
layer. Then, the distance between the perturbed gradients
∇F ′k(W k

t , ξ
k
t) and the raw gradients ∇Fk(W k

t , ξ
k
t) of the

whole model is the same as that of the s-th layer. Thus,

E||∇F ′k(W k
t , ξ

k
t)−∇Fk(W k

t , ξ
k
t)||2 (23)

=E||∇F ′k(ws
k
t , ξ

k
t)−∇Fk(ws

k
t , ξ

k
t)||2 (24)

≤Λs · ε. (25)

Next, we use the norm triangle inequality to bound he
variance of stochastic gradients in each device, and we have

E||∇F ′k(W k
t , ξ

k
t)−∇Fk(W k

t)||2 (26)

≤E||∇F ′k(W k
t , ξ

k
t)−∇Fk(W k

t , ξ
k
t)||2 (27)

+ E||∇Fk(W k
t , ξ

k
t)−∇Fk(W k

t)||2 (28)

≤Λs · ε+ σ2
k, (29)

where we use Assumption 4 and Equ. (25) in Equ. (29).
New bounds for Assumption 5 with our defense. The ex-
pected squared norm of stochastic gradients ∇F ′k(W k

t , ξ
k
t)

with our defense is as follows:

E||∇F ′k(W k
t , ξ

k
t)||2 (30)

≤E||∇F ′k(W k
t , ξ

k
t)−∇Fk(W k

t , ξ
k
t)||2 (31)

+ E||∇Fk(W k
t , ξ

k
t)||2 (32)

≤Λs · ε+G2, (33)

where we use Assumption 5 and and Equ. (25) in Equ. (33).
Convergence guarantee for FedAvg with our defense.
We define F ∗ and F ∗k as the minimum value of F and

Fk and let Γ = F ∗ −
N∑
k=1

pkF
∗
k . We assume each device

has I local updates and the total number of iterations is T .
Let Assumptions 2 to 6 hold and L, µ, σk, G,Λs be defined
therein. Choose κ = L

µ , γ = max{8κ, I} , the learning
rate ηt = 2

µ(γ+t) . By applying our new bounds and Theo-
rem 2 in [15], FedAvg using our defense has the following
convergence guarantee:

E[F (WT)]− F ∗ ≤ 2κ

γ + T
(
Q+ C

µ
+
µγ

2
E||W0 −W ∗||2),

(34)
where

Q =

N∑
k=1

p2
k(Λs · ε+ σ2

k) + 6LΓ + 8(I − 1)2(Λs · ε+G2)

C =
4

K
I2(Λs · ε+G2).

