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Univ Rennes, Inria, CNRS, Irisa, Rennes, France

ramanasubramanyam.sundararaman@polytechnique.edu,

{cedric.de-almeida-braga,julien.pettre}@inria.fr,
eric.marchand@irisa.fr

Abstract

In this supplementary material, we provide more detailed
insights into the statistics of our dataset and its annotation
procedure. We also report the influence of hyperparameters
of trackers, which we have used for performing baseline ex-
periments. Finally, we explore the role of various head de-
tectors in tracking performances and present the sequence-
wise result of HeadHunter and HeadHunter-T on CroHD.

1. CroHD Annotation

We annotated heads of pedestrians in this dataset in order
to reduce the intra-target occlusions. The annotation work
was performed with the help of Crowdsourcing platform,
Fiverr 1 using the CVAT Annotation tool 2. Due to the num-
ber of targets to be tracked being plentiful, while the area of
tracking is significantly smaller than existing approaches,
the margin for errors in this annotation procedure is large.
As a result, we employed a three-stage reviewing process
for thoroughgoing the annotation. First, we automated the
process of spotting identity switches and track fragmenta-
tions, which were the most common mistakes made by an-
notators. Then, the annotations corresponding to a sequence
were reviewed by a team of annotators, separate from those
who annotated the particular scene, to avoid any bias. Fi-
nally, we (the authors of this work) manually inspected the
annotation.
Automation of reviewing: A pedestrian head is assigned
an ID as soon as it becomes visible and the same ID is main-
tained until it leaves the field of view (FoV). Using this in-
formation, we gathered tracks which have not terminated
near the image boundary, with the last few frames being an
exception. This helped us in identifying tracks whose an-
notations have been fragmented. Another common mistake
in annotations were identity switches, when the identity of

1http://fiverr.com/
2https://github.com/opencv/cvat

two pedestrian heads end up mutually swapping. In order to
spot this, for each target, we analyzed the displacement of
respective bounding box centroids. If at a particular frame,
the motion of a particular track was two standard deviations
away from the mean displacement, such tracks were flagged
for a potential identity switch review. Note that both meth-
ods mentioned in this section are not complete and do not
recognize all fragmentation and identity switches. How-
ever, they have significantly helped in minimizing human
efforts in spotting such errors.
Visibility: Figure 1 shows an example of various types of
occluders across all scenes in our dataset. Occluders in the
scene, which are either opaque or translucent, affect the vis-
ibility of pedestrians. Heads obscured by Translucent oc-
cluders such as tree leaves were annotated with the “ignore
label” for tracking but are considered for evaluation of head
detectors. Heads obscured by opaque occluders were nei-
ther considered for the evaluation of tracking nor detection
and are annotated with visibility flag of “0”. Assigning a
visibility flag for a heads was left to the best discretion of
annotators.
Key Frame Annotation: Due to the high frame rates (25
FPS) across videos, we employ keyframe annotation rule,
with every 10th frame considered a keyframe. Annota-
tions were performed only on keyframes with a linear in-
terpolation employed to annotate the positions of bounding
boxes for the frames in between two successive keyframes.
We used every 5th frame to be a keyframe in sequences
CroHD-03 and CroHD-13, where the pedestrian density
and velocity are significantly higher than the other se-
quences, and parts of sequences where minor camera mo-
tion was incurred. Bounding boxes were adjusted in be-
tween keyframes for pedestrians in a particular frame if
needed due to perceptible head motion. Once annotations
were completed for a particular scene, two separate annota-
tors reviewed the frames in between keyframes to supervise
termination, initialization and occlusion handling of tracks.
Statistics: We analyze the detailed statistics of our bench-
mark in this section as summarized in Table 6. Specifically

http://fiverr.com/
https://github.com/opencv/cvat


we look into the statistics of our track length, pedestrian
velocities, bounding box ratio, occlusions and class distri-
bution. Average pedestrian velocity is the mean distance
travelled by the tracks between each frame in pixels, aver-
aged over the whole sequence and represented as px.s−1.
Bounding box ratio (BBR) denotes the ratio of spatial di-
mensions of frames to that of average bounding box in the
respective sequence. Occlusion refers to the average time
(in frames) that a target was annotated with a visibility flag
of “0”.
We compare CroHD with multiple pedestrian tracking
benchmarks based on number of pedestrian annotations,
pedestrian densities and tracks annotated as depicted in Ta-
ble 1. The density in the table refers to the average num-
ber of pedestrian annotations per frame. CroHD has the
largest pedestrian annotation, pedestrian density and num-
ber of tracks.

Dataset Videos Frames Boxes Density Tracks
MOTChallenge-15 [8] 22 11,283 101,345 8.95 1221
MOTChallenge-16 [10] 14 11,235 292,733 25.8 1342
MOTChallenge-19[3] 9 13,410 2,259,143 171.0 3882
MOTS[14] 8 5,906 59,163 10.0 578
CroHD 9 11,463 2,276,838 178.0 5230

Table 1. Comparison between CroHD and existing multiple-
pedestrian tracking benchmarks. Barring density, all the other
columns refer to total figures for respective benchmarks.

2. Hyperparameter Tuning

In this section, we discuss the influence of hyperparame-
ters for trackers which we used for baseline experiments on
CroHD - IoU Tracker [2] and SORT [1]. For the two exper-
iments, we used the detection provided by HeadHunter, to
ensure fairness in evaluation.

2.1. IoU Tracker

We mainly study the influence of parameter σiou, σh, ttl
and tmin. The minimum IoU between two detection over-
laps to be considered a track is denoted by σiou. Tracks are
filtered if they do not contain at least one detection with an
IoU ≥ σh for at least tmin frames. ttl denotes the number
of frames through which visual tracking is performed back-
wards, with the Kernelized Correlation Filters (KCF) [5] ap-
plied for visual tracking. We observe no noticeable change
with modification of parameters σh and ttl. We further at-
tempted MedianFlow [6], TLD [7] as choices for visual
tracking and no significant changes were observed with
these modifications either. We hypothesize the size of ob-
jects being tracked as a reason for the observed invariance
in performances. The results are summarized in Table 2.
First row shows the performance of this tracker with all hy-
perparameters set to their default value. Better performance

with respect to the identity metric are observed in the case
of default tmin value while a lower tmin and higher σiou
signifies a better MOTA score.

σiou tmin MOTA IDEucl IDF1
0.3 5 51.0 31.9 33.7
0.2 5 51.4 32.6 34.1
0.4 5 50.1 28.8 32.2
0.5 5 48.0 23.6 29.0
0.8 5 42.5 17.1 23.6
0.3 4 51.6 30.9 33.6
0.3 3 52.1 30.2 33.4
0.3 2 52.4 29.1 33.2

Table 2. Results of tuning V IOU[2] tracker’s hyper-parameters
on the training set of CroHD.

2.2. SORT

We analyze three parameters corresponding to SORT [1],
namely, max age, min hits and min IoU. The maximum
age a track will be kept alive without being associated to
a detection is denoted by max age. Without an associ-
ated detection, the position of tracks are updated through a
Kalman Filter framework following Constant Velocity As-
sumption (CVA) for max age frames. The minimum IoU
required between subsequent detection of a particular track
is denoted by min IoU and min hits denotes the number of
minimum subsequent detection required to be associated to
initialize a track. Table 3 summarizes the performance of
SORT with varying hyperparameters. The first row corre-
sponds to the default configuration while the last row de-
notes the best amongst the configurations we have varied. A
straightforward observation is improvement with increasing
max age, more notably in-terms of IDEucl metrics. This
is in contrast with what Bewely et al. [1] remark in their
original paper. Furthermore, a significant improvement is
also observed by reducing the min IoU. These two occur-
rences can be explained due to significantly reduced over-
laps between bounding boxes in tracking by head detection
paradigm compared to tracking by full-body detection.

2.3. HeadHunter-T

We mainly analyze the impact of minimum confi-
dence(or particle weights), λreg, required to keep a track
alive. Table 4 shows the corresponding result. Surprisingly,
lowering the λreg performs the best amongst the other val-
ues. We believe thresholding detection to 0.6 to be a pos-
sible reason behind this observation. Hence, we also an-
alyze the effect of λdet, the minimum confidence score to
initialize a track with λdet = 0.8 and λdet = 0.3. A re-
duction in λdet implied a mild deterioration in the identity
preserving metrics, IDF1 and IDEucl. However, increas-



max age min hits min IoU MOTA IDEucl IDF1
1 3 0.3 41.1 28.4 30.3
1 3 0.2 41.2 28.4 30.3
1 3 0.4 41.0 28.2 30.0

15 3 0.3 43.2 54.1 44.9
30 3 0.3 43.3 57.8 46.6
15 1 0.3 50.6 52.7 48.3
30 1 0.3 50.8 56.5 50.5
1 1 0.3 46.8 27.3 30.5

Table 3. Results depicting fine-tuning hyperparameter of
SORT[1] on the training set of CroHD.

ing λdet showed a noticeable decline in performance. An
increment in the either initialization threshold (λdet) or re-
gression threshold (λreg) produces monotonically decreas-
ing performance results.

λreg
λdet = 0.3 λdet = 0.6 λdet = 0.8

MOTA IDEucl IDF1 MOTA IDEucl IDF1 MOTA IDEucl IDF1

0.1 64.9 59.3 56.6 64.0 61.5 58.5 54.8 57.0 52.2

0.2 63.2 51.4 50.6 60.7 54.5 52.7 51.0 51.9 47.4

0.3 61.2 43.4 41.9 56.9 47.7 50.2 48.3 48.7 44.3

0.4 58.0 35.7 33.5 55.7 45.1 43.5 45.7 44.9 40.7

0.5 53.7 32.7 28.3 53.0 38.8 37.3 43.1 40.1 36.7

0.6 48.3 33.0 25.7 49.7 32.4 29.0 40.1 35.1 30.9

Table 4. Hyperparameter Fine-Tuning results of HeadHunter-T
on the training set of CroHD.

2.4. Detection and Tracking

In this section, we analyze the tracking performances of
various object detectors that were used for baseline exper-
iments on head detection task of CroHD. Table 5 shows
the object detectors upon whose output, the initialization
of tracks in HeadHunter-T depends on. The tracking per-
formances were evaluated on the training set of CroHD.
These experiments were preformed analogous to Public De-
tection experiments on the standard MOTChallenge Bench-
marks [3, 10]. Since the task of Face Detection is cog-
nate to Head Detection, we used RetinaFace [15], a re-
cent face detector which is the state-of-the-art method on
WIDER FACE dataset. We used the implementation and
model weights provided by the author. HeadHunter without
Fine-Tuning on CroHD and without the Context Module are
denoted as HeadHunter W/O FT and HeadHunter W/O Ctx
respectively. For Headhunter W/O FT, we trained only on
the training sets of CrowdHuman [13] and SCUT-HEAD
dataset [11] . Barring RetinaFace and HeadHunter W/O FT,
the remaining head detectors have been trained on CroHD.

Method MOTA ↑IDEucl ↑IDF1 ↑MT ↑ML ↓ID Sw. ↓

FRCNN[12] 46.0 37.8 36.1 140 111 12,178

FPN[9] 49.1 37.0 35.5 202 95 10,424

HeadHunter W/O Ctx 49.7 44.0 42.3 115 193 2,579

HeadHunter W/O FT 54.5 40.0 38.4 142 116.0 7,621

RetinaFace[4] 27.7 41.1 29.0 34.5 455 2,304

HeadHunter-T 58.2 52.5 49.9 157 122 1941

Table 5. Tracking performance comparison of HeadHunter-T on
training set of CroHD with tracked initialized from various detec-
tors.



Sequence Name
Avg Track Length Avg Track Duration Avg Velocity BBRR Avg Occlusions Instances per class

(pixels) (frames) (px.s−1) width height (frames) 1 2 3 4

CroHD-01 593 244.3 61.7 1:41.7 1:82.2 11.8 79 4 2 0

CroHD-02 889 533.4 41.7 1:43.2 1:75.00 12.2 1,249 22 2 3

CroHD-03 1,322 318.1 103.9 1:33.1 1:63.4 25.7 809 0 0 2

CroHD-04 625 294.1 53.2 1:32.4 1:58.0 24.2 573 7 0 0

CroHD-11 613 270.0 56.8 1:36.6 1:79.7 16.9 120 9 2 2

CroHD-12 1,043 454.7 57.3 1:30.9 1:59.9 11.9 708 28 0 1

CroHD-13 922 351.7 65.5 1:32.7 1:68.0 53.3 731 2 1 0

CroHD-14 523 381.1 34.3 1:43.6 1:82.9 27.3 527 35 478 0

CroHD-15 919 389.6 59.0 1:32.9 1:84.6 25.8 256 61 1 3

Table 6. Detailed statistics of each sequence composing our dataset, CroHD. BBRR indicates bounding box to image ratio (in pixels).
Classes correspond to 1:Pedestrian, 2:Static, 3:Ignore and 4:Person on Vehicle.

Sequence Name
Head Detection Head Tracking

AP ↑ R ↑ F1 ↑ MODA ↑ MODP ↑ mAP COCO ↑ MOTA ↑ IDF1 ↑ IDEucl ↑ MT ↑ ML ↓ FP ↓ FN ↓ IDs ↓

CroHD-01 79.3 83.4 86.5 76.4 64.0 37.3 84.5 76.4 79.1 55 4 237 2,550 59

CroHD-02 40.4 52.9 61.1 50.0 38.6 9.1 66.7 66.4 60.0 548 127 46,479 168,299 2,049

CroHD-03 58.9 60.4 73.3 61.6 45.5 17.2 51.3 45.4 42.9 160 133 9,481 103,562 2,243

CroHD-04 64.6 70.0 76.9 65.7 51.5 20.3 53.6 52.7 47.9 135 98 9,438 61,238 975

CroHD-11 83.1 86.4 88.3 79.5 64.9 37.4 81.5 76.1 75.2 84 7 1,428 4,056 101

CroHD-12 34.8 51.0 58.6 42.1 37.2 10.2 60.6 64.3 57.1 264 64 21,851 100,484 1,173

CroHD-13 41.7 45.6 58.8 47.0 32.6 11.1 32.5 29.5 28.1 29 296 11,499 133,789 2,034

CroHD-14 45.8 62.3 67.5 43.1 46.7 16.0 67.3 61.2 59.4 215 60 11,506 48,580 817

CroHD-15 57.5 71.8 68.5 38.7 54.9 24.2 75.9 70.4 65.9 140 76 5,540 16,710 334

Table 7. Sequence-wise performances of HeadHunter and HeadHunter-T on CroHD.



Figure 1. An overview of annotated frames from our dataset, CroHD. In both train (left column) and test (right column) sets, bounding
boxes of heads are either active (dark blue), static (orange), occluded (pink) or non-human (light blue). Occluders are present in many
scenes, either opaque (green) or translucent (yellow).



Algorithm 1 HeadHunter-T
Require: Video I containing T frames {I′, · · · , IT −∞}
Ensure: Trajectories T = {T1, · · · , Tk}

1: L, T ,D ← φ
2: for t = 1, · · · , T − 1 do
3: Ft ← EXTRACTFEATURE(It)
4: for l ∈ L do
5: if l.λt > λage then
6: Lt ← Lt \ l
7: end if
8: l.predict cva()
9: end for

10: for a ∈ T do
11: pa

t ,wa
t ← ROIPOOL(Ft,p

a
t−1.predict())

12: if mean(wa
t ) < λreg then

13: T ← T \ a
14: L ← L ∪ a
15: else
16: T ∪ a
17: end if
18: if N̂k

eff > N̂thresh then
19: a.resample(p̂a

t )
20: end if
21: end for
22: Dt ← filter(ROIPOOL(RPN(Ft)), λ

new)
23: Dt ← Dt \ filter(IoU(Dt, Tt), λinit)
24: for d ∈ Dt do
25: for l ∈ L do
26: if cost match(l, d, α, β) > C then
27: Lt ← Lt \ l
28: Dt ← Dt \ l
29: T ← T ∪ l
30: init particles(l)
31: end if
32: end for
33: end for
34: for d ∈ Dt do
35: N ← init particles(init track(d))
36: end for
37: T ← T ∪N & N ← φ
38: end for
39: return T
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