Supplementary Material — TrafficSim: Learning to Simulate Realistic
Multi-Agent Behaviors

Simon Suo’?, Sebastian Regalado®, Sergio Casas'?, Raquel Urtasun®

2

'Uber ATG, ?University of Toronto, *University of Waterloo

{suo, sergio, urtasun}@cs.toronto.edu, sdregala@edu.uwaterloo.ca

In this supplementary material, we provide the following:
additional details of our method in Section A, implementa-
tion details of baselines and metrics in Section B, and lastly,
additional qualitative results in Section C.

A. Additional TRAFFICSIM Details

In this section, we describe additional details of input param-
eterization, model architecture, and learning methodology
for TRAFFICSIM.

Input Parameterization: We use a rasterized map repre-
sentation that encodes traffic elements into different channels
of a raster. There are a total of 13 map channels consisting
of intersections, lanes, roads, etc. We encode traffic control
as additional channels, by rasterizing the lane segments con-
trolled by the traffic light. We initialize each scenario with 3s
of past actor states, with each actor history represented by 7
bounding boxes across time, each 0.5s apart. When an actor
does not have the full history, we fill the missing states with
NaNs. For simplicity, we keep the traffic light state fixed (at
t=0) across the simulation horizon in training. This allows
us to process the global map feature once, and accumulate
gradients on the same features through back-propagation.

Global Map Module: We use a multi-scale backbone to
extract map features at different resolution levels to encode
both near and long-range map topology. The architecture
is adapted from [12]: it consists of a sequence of 4 blocks,
each with a single convolutional layer of kernel size 3 and [8,
16, 32, 64] channels. After each block, the feature maps are
down-sampled using max pooling with stride 2. Finally, fea-
ture maps from each block are resized (via average-pooling
or bilinear sampling) to a common resolution of 0.8m, con-
catenated, and processed by a header block with 2 additional
convolutional layers with 64 channels.

Local Observation Module: We design the local obser-
vation modules to be lightweight and differentiable. This

enables the simulation to be fast and allows us to backprop-
agate gradient through the simulation. Works in motion
forecasting (e.g., [8] typically rasterize the bounding boxes
of each actor, use a convolutional network to extract motion
features, and rely on a limited receptive field to incorporate
influences from its neighbors. In contrast, we directly encode
the numerical values parameterizing the bounding boxes us-
ing a 4-layer GRU with 128 hidden states, and rely on the
graph neural network based module for interaction reason-
ing. More concretely, we fill NaNs with zeros, and also pass
in binary mask indicating missing values to the GRU. For
extracting local map features from the pre-processed map
features, we use Rotated Region of Interest Align with 70m
in front, 10m behind, and 20m on each side. The extracted
local features are further processed by a 3-layer CNN, and
then max-pooled across the spatial dimensions. The final
local context x; for each actor ¢ is a 192 dimensional vector
formed by concatenating the map and motion features.

Scene Interaction Module: We leverage a graph neural
network based scene interaction module to parameterize our
joint actor policy. In particular, our scene interaction module
is inspired by [6, 7], and is used in our Prior, Posterior, and
Decoder networks. We provide an algorithmic description
in Algorithm 1. The algorithm is written with for loops for
clarity, but in practice our implementation is fully vectorized,
since the only loop that is needed is that of the K rounds of
message passing, but in practice we observe that K = 1 is
sufficient. Our edge function £(*) consists of a 3-layer MLP
that takes as input the hidden states of the 2 terminal nodes
at each edge in the graph at the previous propagation step
as well as the projected coordinates of their corresponding
bounding boxes. We use feature-wise max-pooling as our
aggregate function A*). To update the hidden states we use
a GRU cell as /(%) Finally, to output the results from the
graph propagations, we use another MLP as readout function

0.

Algorithm 1 SIM: Scene Interaction Module

Input: Initial hidden state for all of the actors in the scene H® = {h{, h{, -

-, hQ }. BEV coordinates of the actor bounding

boxes {co, Cly..s C N}. Number of message propagations K (defaults to K = 1).

yON }
1: Construct actor interaction graph G = (V, E)

Output: Output vector per node {00, 01, "+

2: Compute pairwise coordinate transformations 7 (¢y, ¢,), V(u,v) € E

3: fork=1,..., K do
4: for (u,v) € Edo

5: m1(tk—)>’u = g(k) (hﬁ_la hﬁ_lv T(Cu7 Cv))
6: forv € V do

7 agk) = A®) ({mgﬂy T € N(v)})
s: n = u® (nY, o)

9: forv e Vdo
10: 0, =0 (hq(,K))

11: return {og,01, -+ 0N}

> Loop over graph propagations
> Compute message for every edge in the graph

> Update node states

> Aggregate messages from neighbors

> Update the hidden state

> Compute outputs

Simulation Horizon: T

g

Label Horizon: T,

label

A\

>

label Time

Figure 1: Our adaptive weight is a decreasing function of
simulation timestep.

Simulating Traffic Scenarios: We provide an algorithmic
description of the overall inference process of simulating
traffic scenarios in Algorithm 2. While the algorithm de-
scribes the process of sampling a single scenario, and loop
over actors in the scene, we can sample multiple scenarios
with arbitrary number of actors in parallel by batching over
samples and actors. Note that we do not directly regress
heading of the actors. Instead, we approximate headings
in a post-processing step by taking the tangent of segments
between predicted waypoints. This ensures the headings are
consistent with the predicted motion.

Time-Adaptive Multi-Task Loss: We use a multi-task
loss to balance supervision from imitation and common

Collision
Loss

(ry+r,)

Figure 2: Differentiable relaxation of collision loss approx-
imates each vehicle as 5 circles and considers distance be-
tween closest centroids.

sense:

L= Z A(t)ﬁfmitation + (1 -)‘(t))ﬁzollision (1)

t
Concretely, we define the time-adaptive weight as:

A(t) = min(*22 =" o) @
71labf:l

where Tj,pe is the label horizon (i.e., latest timestep which
we have labels). Figure 1 illustrates this function. Intuitively,
the weight on imitation must drop to zero at Tj,pe as We no
longer have access to labels. We note that our method is
not sensitive to the choice of A(t). Experiments with other
decreasing function of simulation timestep yields similar
results.

Differentiable Relaxation of Collision: Figure 2 illus-
trates our proposed differentiable relaxation of collision.

More concretely, the loss is defined as follows:

t+P

1 T T
‘Czollision (y]frior) = W Z max(l, Z ‘Cpaif(yi 7yj)) (3)
i#£j T=t+1

»Cpair(y:l—a y;—) = (4)

1— -, ifd<ri+r;
0, otherwise

Intuitively, if there’s no overlap between any circles, the
collision loss is 0. If two circles completely overlap, the
collision loss is 1. We further reweight the collision loss
with a factor of 0.01 to be on similar scale as the imitation
loss.

B. Additional Experiment Details

In this section, we provide additional details on baselines,
metrics, and experimental setup.

B.1. Baselines

IDM [11]: The Intelligent Driver Model (IDM) is a heuris-
tic car following model that implement reactive keep lane
behavior by following a specific headway vehicle. We re-
solve headway vehicle based on lane association, and also
a narrow field of view in a 30° sector in front of each actor,
with visibility up to 10 meters. We implement traffic control
as a phantom actor that has zero size. We use a simulation
frequency of 2.5Hz (0.4s per timestep), max deceleration
of 3 m/s?, reaction time of 0.1s, time headway of 1.5s. To
generate diverse simulations, we sample max acceleration in
the range of [0.6,2.5] m/s?, and desired speed in the range
of [10, 20] m/s. Since the motion of IDM actors are param-
terized against lane centerlines, it can trivially avoid traffic
rule violations. However, it does suffer from an inherent
limitation: unlike learned models, it cannot infer traffic flow
from the initial actors states when given partially observed
traffic light states, and thus results in occasional collisions at
intersections.

MTP [8]: Multiple Trajectory Prediction (MTP) models
uncertainty over actors’ future trajectories with mixture of
Gaussians at each prediction timestep. It does not explic-
itly reason about interaction between actors as the future
unrolls, and makes conditional independence assumption
across actors. We use a mixture of Gaussian with 16 modes.
Following the training methodology described in the original
paper, we select the closest matching mode to compute loss,
instead of directly optimizing the mixture density.

ESP [10]: ESP models multi-agent interaction by leverag-
ing an autoregressive formulation, where actors influence
each other as the future unrolls. Due to memory constraints,
we limit the radii of the whiskers to [1, 2, 4] m while keep-
ing the seven angle bins. We implement the social context

condition with a minor modification. The original paper
specifies a fixed number of actors (since Carla has a small
number of actors). , but this is not possible in ATG4D since
traffic scenes contain many more actors. Thus, we use k-
nearest neighbors to select M = 4 neighbors to gather social
features.

ILVM [7]: We adapt ILVM from the joint perception and
prediction setting by replacing voxelized LiDAR input by
rasterized actor bounding boxes. Since processing noise-
free actor bounding boxes require less model capacity than
performing LiDAR perception, we reduce the number of con-
volutional layers in the backbone to improve inference speed.
We noticed no degredation in performance in reducing the
model capacity.

DataAug: We follow data augmentation technique de-
scribed in [1], since it also leverages large-scale self-driving
datasets and is closest to our setting. To factor out effects
of model architecture, we use the best motion forecasting
model ILVM as the base architecture. In particular, for each
eligible trajectory snippet, we perturb the waypoint at the
current timestep with a probability of 50%. we consider
a trajectory to be eligible if has moved more than 16m in
the 2s window around the perturbation (i.e. speed higher
than 8m/s). We uniformly sample perturbation distance in
the range of [0, 0.5] m, and sample a random direction to
perturb the waypoint. Finally, we fit quadratic curves for
both x and y as function of time, to smooth out the past and
future trajectory. We only alter waypoints up to 2 seconds
before and after the perturbation point.

AdversariallL.: Inspired by [9, 5, 4, 2, 3], we implement
an adversarial imitation learning baseline by jointly learning
a discriminator as the supervision for the policy. Similarly,
to factor our the effects of model architecture, we leverage
our differentiable observation modules and scene interac-
tion module to parameterize the policy. In particular, the
extracted scene context is directly fed to the scene interaction
module to output a bivariate Gaussian of the next waypoint
for each actor in the scene. The discriminator has a simi-
lar architecture with spectral normalization. By leveraging
our differentiable components, we enable our adversarial
IL baseline to also leverage back-propagation through sim-
ulation. This allows it to sidestep the challenge of policy
optimization, and enables a more direct comparison with our
method. For optimization, we use a separate Adam optimizer
for the policy, and RMSProp optimizer for the discriminator.
Furthermore, we found it’s necessary to periodically use
behavior cloning loss to stabilize training. We use a replay
buffer size of 200 and batch size 8 for optimizing the policy
and the discriminator. Furthermore, following [2], we use

Algorithm 2 TRAFFICSIM: Simulating Traffic Scenarios

Input: Rasterized high definition map M. Initial actor states Y 70 =

for the IV actors in the scene.
Output: Simulated actor states Y7 =

1: M + MapBackbone(M)

2. fort=1,...,Tdo

3 for:=1,....,Ndo

4: r; + RRoiAlign(y?, M)
5 z;"® + MaxPooling(CNN(r;))
6

7

8

9

{yl Y2, ...

l.gnotion — GRU(y;Ht)
X, x;nap @ xgnotion
X ={z;:Viel...N}
: {Z,,2,} + Prior,(X)
;. Z~N({Z,,2,-1})
1: H={MLP(z; ®z):Viel...N}
12: Y « Decodery(H)
[

14: return Y57 = {Y1 y2 ... YT}

={YV~H ... Y% where each Y = {91, v}, ...,y }

, YT} for T simulation timesteps.

> Extract global map feature once per environment
> Simulate for requested number of timesteps
> Extract local context for each actor at each timestep

> Use SIM modules to output latent prior distribution
> Sample a scene latent from diagonal Gaussian

> Use SIM module to decode actor plans

> Update environment by taking the first « steps of the actor plans

a curriculum of increasing simulation horizon to ease opti-
mization. More concretely, we first pre-train with behavior
cloning for 25k steps, then follow a schedule of [2,4,6,8]
simulation timesteps increasing every 25k steps. We found
increasing simulation horizon further does not improve the
model.

B.2. Metrics

Scenario Reconstruction: For each simulation environ-
ment (i.e., with a given map, traffic control, and initial actor
states), we define the following scenario reconstruction met-
rics over the K traffic scenarios sampled from the model:

N Tiabel

minSADE = man NTldb 1 E Z ||yn GT — yn (k)H

=1 t=1

[abe! Tv\e
Zny,;h' T |2

minSFDE = mln

K N T
t t 2
meanSADE = KNT1 - kz Z Z [Yn,cT — yn,(k)H

meanSFDE = N Z Z IIyn ‘& — y7TLI ka])H

k=1n=1

In particular, we only evaluate up to Tj,ne; = 8s due to the
availability of ground truth actor trajectories.

Interaction Reasoning: Our scenario level collision rate
metric is implemented as follows:

A A N T)
SCR:N—SZ me(gg IoUbH,)>6]>

s=1 1i=1

In particular, we consider two actors to be in collision if
their bounding boxes overlap each other with IOU greater
than a small € of 0.1. This threshold is necessary since the
labeled bounding boxes are slightly larger than true vehicle
shape, thus sometimes resulting in collisions even in ground
truth scenarios. Furthermore, we count a maximum of 1
collision per actor. In other words, we count number of
actors in collision, rather than number of total collisions
between pairs of actors.

Traffic Rule Compliance: We leverage our high defini-
tion map with precise lane graph annotations to evaluate
traffic rule compliance. More concretely, we first obtain
the drivable areas of each actor in the scenario by first per-
forming lane association. Then, we traverse the lane graph
to derive a set of reachable lane segments from the initial
location, including neighbours and successors. Furthermore,
we cut off any connection influenced by traffic control (i.e.
red traffic light). We rasterize the drivable area with binary
values: 1 for drivable and O for violation. This allows us to
efficiently index and calculate traffic rule violations. To han-
dle actors that begin initially outside of mapped region (i.e.
parked vehicles on the side of the road or in a parking lot),
we ignore actors that do not have initial lane associations.

Diversity: To calculate our map-aware diversity metric,
we leverage the same drivable area raster employed by the
traffic rule compliance metric. More concretely, we first
filter out actor trajectory samples that violate traffic rule,
then we measure the average distance (across time) between

Figure 3: Comparison between simulated trajectories (purple) sampled from TrafficSim and real trajectories (white) from

ATG4D

the two most distinct trajectory samples for each actor.

N T
1 t t 2
MASD = — E E (k) — ,
kkgé%xK NT o 1Y) = Y,

B.3. Experimental Setup

TRAFFICSIM for Data Augmentation: For synthetic
data generation, we generate approximately 15k examples
by initializing from a subset of training scenarios used to
train the traffic simulation models. We use the same amount
of real data for fair comparison. We use a simple imitation
planner, which takes rasterized map and actor bounding box
history as input, and directly regresses the future plan. The
planning horizon is 5s, with 0.5s per waypoint, for a total of
10 waypoints. The imitation planner is learned with supervi-
sion from all actor trajectories in the synthetic scenarios. For
evaluation, we test on the same set of ground truth scenarios
that are used for evaluating traffic simulation metrics.

Incorporating Constraints at Simulation-Time: For re-
jection sampling at simulation-time, we resample at most 10
times to keep the runtime bounded. If we cannot generate
enough collision-free plans after 10 re-sampling steps, we
sort all the generated samples by collision loss, then return

the minimum cost plans. To reason about potential colli-
sion in the future, we evaluate our collision loss on the first
5 timesteps of the sampled actor plans (i.e. 2.5s into the
future). For gradient-based optimization, we leverage our
differentiable relaxation of collision loss. Similarly, we eval-
uate the collision loss on the first 5 timesteps of the actor
plans (i.e. 2.5s into the future). While keeping our model
frozen, we backpropagate the gradient to optimize the latent
samples Z*. Performing the optimization in the latent space
allows us to influence the actor plans while remaining in
the model distribution. More concretely, we take 5 gradient
steps with a learning rate of le-2.

C. Additional Qualitative Results

In this section, we showcase additional qualitative results.
Please refer to the supplementary video for animated se-
quences. Figure 3 shows examples from ATG4D and over-
lays the most likely sample from TRAFFICSIM (given the
same map and initial states). Since ATG4D is observational,
it only captures a single reality. Our simulation recovers that
reality in most cases. And when it does not, it generates
highly sensible alternatives. Figure 4 and 5 show additional
traffic scenarios sampled from our model. Figure 6 shows
comparison between baselines and our model.

Scenario 1

Scenario 3 Scenario 2

Scenario 4

Scenario 5

)
£
R
s
=
D
<
7]

Scenario 7

LRI LN
[N]] 1 il

Scenario 8

Scenario 9

Figure 4: Simulated traffic scenarios sampled from TRAFFICSIM: colored triangle shows heading and tracks instances across
time 6

Scenario 10

Scenario 11

Scenario 12

C T
- =

Scenario 13

<
—
=
o=
R
s
=R
L
Q9
72}

Scenario 15

Scenario 16

Scenario 17

Scenario 18

Figure 5: Simulated traffic scenarios sampled from TRAFFICSIM: colored triangle shows heading and tracks instances across
time 7

Scenario 1 Scenario 2 Scenario 3

AdversariallLL

Our TRAFFICSIM

Figure 6: Comparison between traffic scenarios simulated by the baselines and our model. We show a snapshot at 6s after the
start of the simulation. Red circles highlight collisions and traffic rule violations

8

References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

8]

(9]

[10]

(1]

[12]

Mayank Bansal, Alex Krizhevsky, and Abhijit Ogale. Chauf-
feurnet: Learning to drive by imitating the best and synthe-
sizing the worst. In Proceedings of Robotics: Science and
Systems, FreiburgimBreisgau, Germany, June 2019. 3

F. Behbahani, K. Shiarlis, X. Chen, V. Kurin, S. Kasewa, C.
Stirbu, J. Gomes, S. Paul, F. A. Oliehoek, J. Messias, and
S. Whiteson. Learning from demonstration in the wild. In
2019 International Conference on Robotics and Automation
(ICRA), pages 775-781, 2019. 3

R. P. Bhattacharyya, D. J. Phillips, C. Liu, J. K. Gupta, K.
Driggs-Campbell, and M. J. Kochenderfer. Simulating emer-
gent properties of human driving behavior using multi-agent
reward augmented imitation learning. In 2019 International
Conference on Robotics and Automation (ICRA), pages 789—
795,2019. 3

Raunak P. Bhattacharyya, Derek J. Phillips, Blake Wulfe,
Jeremy Morton, Alex Kuefler, and Mykel J. Kochenderfer.
Multi-agent imitation learning for driving simulation. 2018
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 1534-1539, 2018. 3

Raunak P. Bhattacharyya, Blake Wulfe, D. Phillips, Alex
Kuefler, J. Morton, Ransalu Senanayake, and M. Kochender-
fer. Modeling human driving behavior through generative
adversarial imitation learning. ArXiv, abs/2006.06412, 2020.
3

Sergio Casas, Cole Gulino, Renjie Liao, and R. Urtasun.
Spagnn: Spatially-aware graph neural networks for relational
behavior forecasting from sensor data. 2020 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages
9491-9497, 2020. 1

Sergio Casas, Cole Gulino, Simon Suo, Katie Luo, Renjie
Liao, and Raquel Urtasun. Implicit latent variable model for
scene-consistent motion forecasting. In Proceedings of the
European Conference on Computer Vision (ECCV). Springer,
2020. 1,3

Henggang Cui, Vladan Radosavljevic, Fang-Chieh Chou,
Tsung-Han Lin, Thi Nguyen, Tzu-Kuo Huang, Jeff Schnei-
der, and Nemanja Djuric. Multimodal trajectory predictions
for autonomous driving using deep convolutional networks.
2019 International Conference on Robotics and Automation
(ICRA), pages 2090-2096, 2019. 1, 3

Jonathan Ho and Stefano Ermon. Generative adversarial
imitation learning. In Proceedings of the 30th International
Conference on Neural Information Processing Systems, pages
45724580, 2016. 3

N. Rhinehart, R. Mcallister, K. Kitani, and S. Levine. Precog:
Prediction conditioned on goals in visual multi-agent settings.
In 2019 IEEE/CVF International Conference on Computer
Vision (ICCV), pages 2821-2830, 2019. 3

Martin Treiber, Ansgar Hennecke, and Dirk Helbing. Con-
gested traffic states in empirical observations and microscopic
simulations. Physical Review E, 62(2):1805-1824, Aug 2000.
3

Bin Yang, Wenjie Luo, and Raquel Urtasun. Pixor: Real-time
3d object detection from point clouds. In Proceedings of the
IEEE CVPR, 2018. 1

