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1. Description of network architectures

A high level description of our networks for both site
identification and interaction prediction can be found in
Figs. 1 and 2 respectively. In these diagrams, “FC(I,O)” de-
notes a fully connected (linear) layer with I input channels
and O output channels; “LR” denotes a Leaky ReLU acti-
vation function with a negative slope of 0.2; “BN” denotes
a batch normalization layer. Red, blue and green blocks
denote atom properties, surface descriptors and feature vec-
tors, respectively.

We estimate chemical features on the generated surface
points using the architecture described in Fig. 4. This mod-
ule takes as inputs the atom coordinates and types, along
with the surface point coordinates. For each point on the
surface, the network finds the 16 nearest atoms and assigns a
6-dimensional chemical feature based on the atom types and
their distances to the point. As detailed in Fig. 3, we con-
catenate these chemical features to a 10-dimensional vector
of geometrical features, which approximate the mean and
Gaussian curvatures at different scales.

We then pass these input feature vectors through a se-
quence of convolutional layers (Fig. 5). As discussed in
Section 3 of the paper, we first use the surface normals n̂i
to build local tangent coordinate systems and orient the unit
tangent vectors ûi, v̂i according to the gradient of an ori-
entation score Pi. Finally, we use this complete description
of the surface geometry to establish quasi-geodesic convo-
lutional windows and progressively update our feature vec-
tors.

The DGCNN and PointNet++ baselines replace the
“convolutional” block of our architecture with standard al-
ternatives provided by PyTorch Geometric. We keep the
same numbers of channels as for our method (8 for the
site prediction task, 16 for the search predicition task) and
benchmark runs with several interaction radii and number
of K-nearest neighbors.

2. Description of the training process

We filter the datasets according to the criteria described
in [1]. To be considered in our benchmarks, each protein
must have at least 30 interface points and the interface has
to cover less than 75% of the total surface area.

Parameter Site Search
Optimizer AMSGrad AMSGrad
Learning rate 3× 10−4 3× 10−4

Epochs 50 100
Descriptor dimensionality 8 16
Early stopping Yes Yes

Table 1: Hyperparameters for our training loops.

Binding site identification. We detail our hyperparame-
ters in Table 1. Surfaces are generated in batches, but pre-
dictions are only performed on single proteins at a time.
From each protein, 16 positives and 16 negatives locations
are randomly sampled and the loss function is computed
on these points. We found that this process stabilized the
training process and improved generalization. Labels are
mapped from precomputed MaSIF meshes by finding the
nearest neighbours. Furthermore, if a point is further than
2.0Å away from any precomputed mesh point, it is labeled
as non-interface. The loss is computed as the binary cross
entropy between the labels and the predictions.

Interaction prediction. Surface generation and predic-
tion are performed in the same way as for binding site iden-
tification. However, as detailed at the end of Section 3.3 in
the paper, each binding partner is passed through a separate
convolutional network. The prediction scores are then com-
puted by taking the inner product between the convolutional
embeddings of the two proteins. Pairs of points are labeled
as interacting if they are less than 1Å from each other. From
each protein, 16 positives and 16 negatives were randomly
sampled. The loss was computed as the binary cross en-
tropy.
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Figure 1: Overview of our architecture for the site predic-
tion task, that we handle as a binary classification problem
of the surface points. The “surface construction” block is
detailed in Figure 3, while the “convolutional architecture”
is detailed in Figure 5.
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Figure 2: Overview of our architecture for the search pre-
diction task. The “surface construction” block is detailed in
Figure 3, while the “convolutional architecture” is detailed
in Figure 5.
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Figure 3: Construction of a surface representation, detailed
in Section 3.1 of the paper. The “chemical features” block
is detailed in Figure 4.
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Figure 4: Estimation of chemical features from the raw
atom types and coordinates.
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Figure 5: Convolutional architecture, with E convolutional
“channels” (we use E=8 for the site prediction task and
E=16 for the search prediction task). Our architecture for
the search prediction task has an additional skip connec-
tion between the inputs and outputs. As detailed in Sec-
tion 3.2, our network first estimates local coordinate sys-
tems [n̂i, ûi, v̂i] attached to the points xi of a protein sur-
face. We then rely on a fast approximation of the geodesic
distance to define quasi-geodesic convolutions and let our
feature vectors fi interact on the protein surface.
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Figure 6: Quality control for our surface generation algorithm. (a) Number of points generated per protein by our method,
as a function of number of points in the precomputed mesh used by MaSIF. As expected, we observe a nearly perfect linear
correlation. (b) For each point generated by our method, we display in orange the distance to the closest point on the
precomputed mesh. Conversely, we display in blue the histogram of distances to the closest generated point, for points on the
MaSIF “ground truth” mesh. We noticed that the blue curve showed a very long tail (not visible on this figure). This comes
from an artifact in the surface generation algorithm of MaSIF, which cuts out parts of proteins that have missing densities.
We solved this discrepancy by removing these points from our dataset as well, and only display point-to-point distances in
the 99th percentile – i.e. we treat the largest 1% distances as outliers, not displayed here.
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(a) Surface generation
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(b) Input features
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(c) Local coordinates

Figure 7: Computational cost of our ”pre-processing” rou-
tines as functions of the batch size. We show the average
time (blue curve and left axis, log scale) and memory (red
curve, right axis, log scale) requirements of our method per
protein, as a function of the number of proteins that are pro-
cessed in parallel by our implementation. The dotted blue
line shows the average time used by MaSIF to generate a
surface mesh from the same atomic point cloud.
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(b) Input features
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(c) Local coordinates

Figure 8: Computational cost of our “pre-processing” rou-
tines, as a function of the sampling resolution. We display
the time (blue line and blue axis) and memory (red line and
red axis) requirements of the pre-convolutional steps of our
architecture as a function of the resolution of the generated
point cloud. As expected, increasing the sampling density
of our surface generation algorithm (i.e. using a lower res-
olution) results in longer processing times.
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(a) Ground truth. (b) Prediction. (c) Error.

Figure 9: Additional rendering, illustrating the results of Figure 7 of the paper on the 10J7 D protein from the Protein Data
Bank. We display the ground truth (a) and predicted (b) electrostatic potential on the protein surface. The error (c) is small,
with RMSE=0.14. We note that most of the error is located inside the cavity.
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Figure 10: Additional display for the site prediction task. We display the distributions of predicted interface scores for both
true interface points (blue) and non-interface points (orange). The separation is clear, resulting in a ROC-AUC of 0.87 in
Figure 8 of the paper.
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