
Supplementary Materials for The Neural Tangent Link
Between CNN Denoisers and Non-Local Filters

Julián Tachella, Junqi Tang and Mike Davies∗

School of Engineering
University of Edinburgh

{julian.tachella, j.tang, mike.davies}@ed.ac.uk

This manuscript contains the supplementary materials supporting the paper entitled “The Neural
Tangent Link Between CNN Denoisers and Non-Local Filters”. It provides a more detailed derivation
of the formulas in the main paper. We repeat some results associated with neural tangent kernel
(NTK) that already exist in the literature [5, 1, 7] for the sake of clarity and to make the document as
self-contained as possible. The supplementary note is organized as follows: Section A states the main
assumptions made for the derivations, discussing their implications. Section B reviews the dynamics
of signal propagation in wide deep neural networks. Section C extends the analysis to backward
signal propagation during backpropagation training. Section D presents a detailed derivation of the
neural tangent kernel and the filtering process. Section E extends the results for multiple input
and output channels and Section F discusses the effect of (linear) downsampling operations of the
autoencoder and U-Net architectures. Section G explains the proposed Nyström method for efficient
filtering with the neural tangent kernel. Section H details the network architectures evaluated in the
experiments. Finally, additional denoising results are presented in Section I.

A Assumptions and other observations
1. We have omitted the use of biases to simplify the presentation. In the case of relu non-linearities,

the presence of biases would add an additional constant term to the V and V ′ maps in eqs. (13)
and (24) [1]. We also found that the denoising performance did not vary significantly with or
without them (for relu non-linearities). Moreover, it has been recently shown that bias-free
denoisers generalize better for different noise levels [8].

2. We focus on the case where all hidden layers have the same number of channels c. Our analysis
can be easily extended for different number of channels per layer, as long as they all grow at
the same rate when taking c→∞ [6].

3. Despite we assume that the output z has a single channel for the main derivations, the theory
applies to a variable number of channels cL, as long as they are significantly smaller than the
ones of the hidden layers c. The extension to multiple channels is provided in section E.

4. We drop the dependence of the pre-activations a` on the input x to lighten notations. In this
document we assume that the NTK is fixed throughout training, and hence drop the iteration
superscript to lighten the notation.

∗The code associated with this work is available at https://gitlab.com/Tachella/neural_tangent_denoiser

1

https://gitlab.com/Tachella/neural_tangent_denoiser


5. For ease of presentation, we focus on the case where all layers have the same image size d` = d.
Section F extends the results for downsampling and upsampling layers of U-Net and autoencoder
architectures.

6. It is worth noting that some architectures proposed in the deep image prior paper [11] have
a number of input channels of order O(c). However, we noticed that reducing the number of
channels does not impact significantly the performance.

7. To the best of our knowledge, the theory presented here cannot not be straightforwardly applied
to networks with batch normalization and max pooling. However, we noted that they do not
affect significantly the denoising performance of the networks.

B Forward signal propagation
In this section we study the statistics of the signal as it propagates through the neural network.
As c → ∞, the preactivations at each layer a`i can be well described by a multivariate Gaussian
distribution due to the central limit theorem [9]. Hence, computing the mean and covariance is
enough to fully characterize their distribution. For the first hidden layer we have, for each channel
i = 1, . . . , c, mean

µa1 = E{W 1
i,1}E{x} (1)

= 0 (2)

and covariance

Σa1 = E{W 1
i,1xx

>(W 1
i,1)>} (3)

where the independence of weights across different filters was used to simplify the sum. Note that we
have dropped the dependence of the mean and covariance on the specific channel i, as all channels
share the same mean and covariance. The expression in eq. (3) consists of pairwise expectations

E{[W `
i,jx]µ[W `

i,jx]v} =
1

r2

∑
µ′,v′

xµ′xv′ (4)

where µ′ and v′ are the indices of pixels within patches of size r × r centered at µ and v respectively.
It can be written in a more compact form as

Σa` = A
(
xx>

)
(5)

where the convolution map A : PSDn 7→ PSDn is defined as [13]

[A (Σ)]µ,v =
1

r2

∑
µ′,v′

[Σ]µ′,v′ (6)

For the following layers we also have zero mean, i.e.,

µa` =

c∑
j=1

E{W `
i,j}E{φ

(
a`−1
j

)
} (7)

= 0 (8)

2



and a covariance is given by

Σa` =

c∑
j=1

E{W `−1
i,j φ

(
a`−1
j

)
φ
(
a`−1
j

)>
(W `−1

i,j )>} (9)

where the first term of the right hand side is given by

E{[W `
i,jφ

(
a`−1
j

)
]µ[W `

i,jφ
(
a`−1
j

)
]v} =

∑
µ′,v′

E{φ
(
a`−1
j,µ′

)
φ
(
a`−1
j,v′

)
} (10)

The expression can be written in compact form as

Σa` = A (V (Σa`−1)) (11)

where the map V : PSDn 7→ PSDn linked to a non-linearity φ (x) is defined as

V (Σ) = σ2
wEh∼N (0,Σ){φ (h)φ

(
h>
)
} (12)

The V -map consists of two-dimensional integrals that are available in closed-form for many activation
functions. In the case of relu non-linearities, we have [3]

[V (Σ)]µ,v =

√
Σµ,µΣv,v

π
(sin(ϕ) + (π − ϕ) cos(ϕ)) (13)

where ϕ = arccos(Σµ,v/
√

Σµ,µΣv,v). As discussed in [13], ` repeated applications of the operator
given by eq. (13) quickly converge to a matrix of the form

[Σ]µ,v =

{
1 if µ = v

κ` otherwise
(14)

where k` decreases to zero exponentially fast with depth. Note that the matrix in eq. (14) is invariant
to the A map, as the diagonal elements are averaged with other diagonal elements, whereas the
off-diagonal entries are averaged with other off-diagonal ones.

The output z is also characterized by a multivariate Gaussian distribution with

Σz = A (V (ΣaL−1)) . (15)

The main difference between the fully connected and convolutional architectures lies in the
covariance Σa` . In the fully connected case, A boils down to the identity operator, and Σa` has an
isotropic structure for all layers, whereas the convolutional network presents rich covariances within
the pixels of each channel in eq. (9), as A cross-correlates different patches of the image.

B.1 Gaussian process interpretation
We can use the distribution of an infinite neural network at initialization to define a prior p(z) =
N (0,Σz) for images, following a Bayesian inference viewpoint [9], a strategy named the Bayesian
deep image prior in [2]. In the case of standard Gaussian noise z = y + n we have

y|z ∼ N (z, σ2
nI) (16)

z ∼ N (0,Σz) (17)

3



where the posterior distribution is available in closed form

z|y ∼ N
(
(I + σ2

nΣ−1
z )−1z, (Iσ−2

n + Σ−1
z )−1

)
(18)

Note that, if iid noise is placed at the input of the network, Σz does not depend on the noise image
z in any way. Moreover, for a relu network, this covariance is given by eq. (14). Figure 1 shows
that the off-diagonal elements κL tend to 1 as the network becomes larger. This prior just promotes
constant images.

C Backward signal propagation
A similar analysis can be made for the propagation of gradients through the network in backwards
direction. This is especially useful to study the behaviour of backpropagation training and avoid
vanishing or exploding gradients in deep networks. Computing gradients with respect to the weights
of the `th layer can be done using the chain rule:

δL
δw`

=
δL
δz

δz

δaL−1
. . .

δa`+1

δa`
δa`

δw`
(19)

We define the gradient as:

δ`i
def
=

δL
δz

δz

δaL−1
. . .

δa`

δa`−1
i

∈ Rd (20)

with δL def
= δL

δz . For a squared loss, the gradient at the last layer is

δL = z − y. (21)

Assuming that independence between gradients and preactivations [13]1, we have for each channel
i = 1, . . . , c of layer L− 1

δL−1
i = diag

(
φ′
(
aL−1
i

))
(WL

1,i)
>δL (22)

which has zero mean and covariance given by

ΣδL−1 =
1

c
V ′ (ΣaL−1) ◦ A (ΣδL) (23)

where the map V ′ : PSDn 7→ PSDn is defined as

V ′ (Σ) = σ2
wEh∼N (0,Σ){φ′ (h)φ′

(
h>
)
} (24)

The expected values are available in closed form for many non-linearities. We can use the following
recursive formula to compute the rest of the layers ` = L− 2, . . . , 1

δ`i =

C`∑
j=1

diag
(
φ′
(
a`−1
i

))
(W `

j,i)
>δ`+1

j (25)

Computing the propagation recursively in backwards direction, we have µδ` = 0 and covariance

Σδ`i = A (Σδ`+1) ◦ V ′ (Σa`) (26)

1This assumption is formally justified in a recent work [14].

4



For relu non-linearities the V ′ map is computed as

[V ′ (Σ)]µ,v = 1− 1

π
arccos

Σµ,v√
Σµ,µΣv,v

(27)

which as with the V counterpart2, repeated applications of this map converge exponentially fast to
the simple matrix structure in eq. (14).

D Neural Tangent Kernel
In this section, we will denote all the trainable network parameters at iteration t as wt. Consider
training a network via gradient descent3, that is

wt+1 = wt − η δL
δw

(wt) (28)

We can study the evolution of the function defined by the weights zt def
= z(wt), using a first order

Taylor expansion, i.e.,

zt+1 ≈ z(wt) +
δz

δw
(wt+1 − wt) (29)

≈ zt − η δz
δw

δL
δw

(30)

≈ zt − η δz
δw

(
δz

δw
)>
δL
δz

(31)

where we have used eq. (28) in the second line and the chain rule in the third line. The neural
tangent kernel (NTK) is given by

ΘL =
δz

δw
(
δz

δw
)> (32)

=
∑
`,i,j,α

δz

δw`i,j,α
(

δz

δw`i,j,α
)> (33)

We can start with the base case,

Θ2 = cV
(
A
(
xx>

))
(34)

and notice the following recursive formulation

Θ` =
δa`i
δw`

(
δa`i
δw`

)> +
δa`i
δa`−1

Θ`−1(
δa`i
δa`−1

)> (35)

=

c∑
j=1

A
(
φ
(
a`−1
j

)
φ
(
a`−1
j

)>)
+W `

i,jdiag
(
φ′
(
a`−1
j

))
Θ`−1diag

(
φ′
(
a`−1
j

))
(W `

i,j)
> (36)

where w` denotes the weights corresponding to layer `. The learning rate η is chosen of order
O(c−1), in order to converge to global minimum [6]. Without loss of generality, we use η = γc−1 for

2Note that the discontinuity of the relu function at 0 is unimportant here due to the expectation operator.
3A very similar analysis can be done for gradient flow and stochastic gradient descent [7]

5



0 20 40 60 80 100

0

0.5

1

Forward GP

NTK

Figure 1: Off-diagonal elements of the filtering matrix associated with the Gaussian process at
initialization and the neural tangent kernel with iid noise input.

the following derivations, where γ is O(1) and chosen such that the neural tangent kernel has its
eigenvalues bounded by 1. As shown in [14], for an infinite number of channels c→∞, due to the
law of large numbers we have

ηΘ` = Σa` +A (V ′ (Σa`) ◦ ηΘ`−1) (37)

which is a fixed (deterministic) matrix. As a function of the input image (or noise) patches, the
NTK defines a kernel acting on pairs of input patches x1 and x2, i.e., k(x1, x2) : Rd0 × Rd0 7→ R+.
As discussed in the main paper, if iid noise is placed at the input, the resulting Gram matrix is given
by eq. (14) with κL as shown in Figure 1.

For a squared loss L = 1
2‖z − y‖

2
2, the dynamics of eq. (29) can be written as

zt+1 = zt + ηΘL

(
y − zt

)
(38)

= (I − ηΘ)t+1z0 +

t∑
k=1

(ηΘL)ky (39)

with initial condition z0 given by the Gaussian process initialization described in Section B. The
expression for zt can be simplified further by noting that the learning rate has to be chosen such
that ηΘ has its eigenvalues bounded from above by 1 (to avoid a diverging gradient descent). Hence,
as I − ηΘ is invertible, we can apply the geometric series formula

zt = (I − ηΘL)tz0 + (I − ηΘL)−1
(
I − (ηΘL)t

)
y (40)

Note that the only random component of this equation is the Gaussian process initialization z0. As
zt is an affine transformation of a Gaussian process, it is also itself a Gaussian process for every
iteration t. Hence, we have

zt ∼ N
(
(I − ηΘ)−1

(
I − (ηΘ)t

)
y, (I − ηΘL)tΣz(I − ηΘ)t

)
(41)

It is easy to see that zt converges at an exponential rate towards a singular distribution centered at
y as t→∞.

E Multiple input and output channels
The theory applies for any number of input and output channels, as long as they are much smaller
than the number of hidden channels c. A multi-channel input modifies the computation in the first

6



layer eq. (3). In this case, first multiplying the patches channel-wise and then summing the result,
that is

Σa1 =

c0∑
j=0

E{W 1
i,jxjx

>
j (W 1

i,j)
>} (42)

where xj denotes the jth channel of the input, and the corresponding infinite-width operator is
computed as

Σa1 =
1

c0

c0∑
j=0

A
(
xjx
>
j

)
(43)

Hence, the pixel affinity function is now defined for a receptive field d0 ≤ d, and patches x1 and x2

of c0 channels as
k(x1, x2) : Rc0d0 × Rc0d0 7→ R+. (44)

Multiple output channels are computed separately using the same filtering matrix, i.e.,

zt+1
i = zti + ηΘL(y − zti) (45)

for i = 1, . . . , cL. Note that both the color versions of NLM and BM3D do a similar procedure,
computing the filtering matrix with luminance (i.e., a linear combination of the RGB channels), and
apply the filtering process to each channel separately.

F Downsampling and upsampling layers
Downsampling can be achieved either via 2-strided convolutional layers or directly with linear
downsampling operations, such as bilinear or nearest neighbor downsampling. Strided convolutions
are a straightforward extension of the A operator defined in eq. (6), summing over strided patches
instead of contiguous ones. Linear downsampling operations can be expressed as a matrix vector
product applied channel-wise, i.e., a`+1

i = Da`i where D ∈ Rd×d/2 is a fixed matrix given by
downsampler (bilinear, nearest neighbor, etc.). The covariance of a`+1

i is then

Σa`+1 = DΣa`D
>. (46)

Upsampling is generally performed with bilinear or nearest neighbor layers, as transposed
convolutions provide worse results [11]. These are analogous to the downsampling case, but with an
upsampling matrix U ∈ Rd/2×d, that is

Σa`+1 = UΣa`U
>. (47)

G Nyström denoising
The Nystrom method approximates the first m eigenvectors of the NTK matrix by computing only a
subset of m� d columns [12], i.e., the sub-matrix

Θd,m =

[
Θm,m

Θd−m,m

]
(48)

7



Module Function Infinite-channel forward operator
input 3 channel RGB image
conv1 11× 11 pixel convolution A with r = 11
relu1 relu activation max(x, 0) V
conv2 1× 1 pixel convolution A with r = 1
output 3 channel RGB image

Table 1: Vanilla configuration with a single-hidden layer.

We first perform a singular value decomposition of the small sub-matrix Θm,m =
∑m
i=1 λ̃iṽiṽ

>
i , and

then approximate the eigenvectors and eigenvalues of the full matrix as

vi =

√
m

d

1

λ̃i
Θd,mṽi (49)

λi =
d

m
λ̃i (50)

We fix m = 0.02d, which allows us to compute most of the md pixel affinities in parallel on the
GPU. The selection of columns is done similarly to global image denoising [10], choosing a random
selection of pixels uniformly distributed in space. Before applying the denoising procedure, we scale
the eigenvalues, such that the maximum eigenvalue is 1.

H Architectures

H.1 Vanilla CNN
Table 1 shows the configuration used for the vanilla CNN results with c = 512 channels per hidden
layer. The network has a total of 187,392 trainable weights.

H.2 Autoencoder
Table 2 shows the configuration used for the autoencoder results with c = 128 channels per hidden
layer. The network has a total of 1,036,032 trainable weights.

H.3 U-Net
The U-Net considered in this paper shares the same architecture and number of weights than the
autoencoder, adding skip connections at each level.

I Additional results
In all the denoising experiments, we normalize the corrupted images by subtracting 0.5 from all
pixels, such that they defined in the centered interval [−0.5, 5]. Before computing the PSNR, we
denormalize the images by summing 0.5 to all pixels and clipping, such that all pixels are in the
interval [0, 1].

8



Module Function Infinite-channel forward operator
input 3 channel RGB image
convd1 3× 3 convolution A with r = 3
relu1 relu activation max(x, 0) V
down1 Bilinear downsampling D
convd2 3× 3 convolution A with r = 3
relu2 relu activation max(x, 0) V
down2 Bilinear downsampling D
convd3 3× 3 convolution A with r = 3
relu3 relu activation max(x, 0) V
down3 Bilinear downsampling D
convd4 3× 3 convolution A with r = 3
relu4 relu activation max(x, 0) V
conv4 3× 3 convolution A with r = 3
up1 Bilinear upsampling U

convu1 3× 3 convolution A with r = 3
relu5 relu activation max(x, 0) V
up2 Bilinear upsampling U

convu2 3× 3 convolution A with r = 3
relu6 relu activation max(x, 0) V
up3 Bilinear upsampling U

convu3 3× 3 convolution A with r = 3
relu7 relu activation max(x, 0) V
convu4 1× 1 convolution A with r = 1
output 3 channel RGB image

Table 2: Autoencoder configuration with bilinear downsampling and upsampling layers.

9



Adam+AE GD+AE Nys.+vanilla

Input

noise

Input

image

Adam+vanilla GD+vanillaAdam+U-Net GD+U-Net

23.4 dB

21.4 dB23.7 dB

16.4 dB

24.8 dB 24.3 dB 25.2 dB

16.6 dB 13.7 dB 13.3 dB23.7 dB

24.3 dB24.3 dB

13.9 dB

Figure 2: Results for the ‘baboon’ image. PSNR values are reported below each restored image. The
best results are obtained by the Nyström approximation of a vanilla CNN filter.

Adam+AE GD+AE Nys.+vanilla

Input

noise

Input

image

Adam+vanilla GD+vanillaAdam+U-Net GD+U-Net

29.2 dB

24.3 dB24.3 dB

16.4 dB30.2 dB

25.1 dB30.5 dB

16.4 dB

27.0 dB 27.2 dB 28.3 dB

21.5 dB 15.7 dB 15.3 dB

28.8 dB 27.0 dB

Figure 3: Results for the ‘F16’ image. PSNR values are reported below each restored image. The
best results are obtained by an autoencoder trained with Adam, which is able to provide smoother
estimates while preserving sharp edges.

I.1 Denoising examples
The deep image prior setting (autoencoder, noise input and Adam optimizer), performs very well in
images with large piece-wise smooth patches, such as the ‘house’ image shown in the main paper
or the ‘F16’ image in Figure 3, but does not provide good reconstructions in images with noise-like
textures, such as the ‘baboon’ shown in Figure 2. The best performing denoiser for this image is the
closed form filter associated with a vanilla CNN, approximated with Nyström.

I.2 Additional noise levels
We evaluate the best-performing denoisers (autoencoder with noise or image input trained using
Adam and Nyström approximation of a vanilla CNN) for iid Gaussian noise with standard deviations
of σ = 5 (low noise) and σ = 100 (high noise). Table 3 shows the results for the dataset of 9 color
images [4]. Inputting the image when using Adam achieves an improvement of 1.8 dB in the low-noise
case, whereas it provides slightly worse (0.3 dB) results in the high noise case.

10



AE/Adam/noise AE/Adam/image Vanilla/Nyström/image
σ = 5 33.5 35.3 34.5
σ = 100 24.4 24.1 22.3

Table 3: Average PSNR [dB] obtained by the best-performing algorithms for different noise levels.

I.3 Epoch count
Table 4 shows the average epoch-count of all methods for the 9 color image dataset. Inputting the
image instead of noise reduces the number of iterations when optimizing with Adam, as the induced
filtering matrix is better conditioned. Gradient descent requires many more iterations than Adam
as it does not uses any momentum. As discussed in the main paper, the filtering matrix associated
with a vanilla CNN and noise input is so ill-conditioned that gradient descent does not converge even
after 106 iterations.

Vanilla CNN U-Net Autoencoder
Noise Image Noise Image Noise Image

Adam 145340 64 7692 74 10248 5088
Gradient descent > 106 69526 50054 5506 50355 286042
Nyström 368 504

Table 4: Average epoch-count by different combinations of network architecture, input and optimizer
on the dataset of 9 color images [4].

References
[1] Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong Wang.

On exact computation with an infinitely wide neural net. In Advances in Neural Information
Processing Systems 32, pages 8141–8150. Curran Associates, Inc., 2019. 1

[2] Z. Cheng, M. Gadelha, S. Maji, and D. Sheldon. A Bayesian perspective on the deep image
prior. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 5438–5446, 2019. 3

[3] Youngmin Cho and Lawrence K Saul. Kernel methods for deep learning. In Advances in neural
information processing systems, pages 342–350, 2009. 3

[4] Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and Karen Egiazarian. Image denoising
by sparse 3-d transform-domain collaborative filtering. IEEE Transactions on image processing,
16(8):2080–2095, 2007. 10, 11

[5] Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. In Advances in Neural Information Processing Systems 31,
pages 8571–8580. Curran Associates, Inc., 2018. 1

[6] Ryo Karakida, Shotaro Akaho, and Shun-ichi Amari. Universal statistics of fisher information in
deep neural networks: Mean field approach. In Prof. of Mach. Learning Research, volume 89,
pages 1032–1041. PMLR, 16–18 Apr 2019. 1, 5

[7] Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models

11



under gradient descent. In Advances in Neural Information Processing Systems 32, pages
8572–8583. Curran Associates, Inc., 2019. 1, 5

[8] Sreyas Mohan, Zahra Kadkhodaie, Eero P. Simoncelli, and Carlos Fernandez-Granda. Robust and
interpretable blind image denoising via bias-free convolutional neural networks. In International
Conference on Learning Representations, 2020. 1

[9] Radford M Neal. Bayesian learning for neural networks. PhD thesis, University of Toronto,
1995. 2, 3

[10] H. Talebi and P. Milanfar. Global image denoising. IEEE Transactions on Image Processing,
23(2):755–768, 2014. 8

[11] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Deep image prior. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 9446–9454, 2018. 2, 7

[12] Christopher K. I. Williams and Matthias Seeger. Using the nyström method to speed up kernel
machines. In Advances in Neural Information Processing Systems 13, pages 682–688. MIT Press,
2001. 7

[13] Lechao Xiao, Yasaman Bahri, Jascha Sohl-Dickstein, Samuel S Schoenholz, and Jeffrey Penning-
ton. Dynamical isometry and a mean field theory of CNNs: How to train 10,000-layer vanilla
convolutional neural networks. arXiv preprint arXiv:1806.05393, 2018. 2, 3, 4

[14] Greg Yang. Scaling Limits of Wide Neural Networks with Weight Sharing: Gaussian Process
Behavior, Gradient Independence, and Neural Tangent Kernel Derivation. arXiv e-prints, page
arXiv:1902.04760, Feb. 2019. 4, 6

12


