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A. Appendix
The following appendix-sections extend their corre-

sponding sections in the paper manuscript. For instance,
the appendix related-work A extends the related-work sec-
tion in the paper manuscript.

A. Appendix: Related Work
The proposed kernel-level convolution-aware splitting

(KELS) technique enables the knowledge evolution (KE)
approach to learn a slim network with a small inference
cost. This signals KE+KELS as a pruning approach. In
this section, we compare KE+KELS with the pruning lit-
erature. We categorize the pruning approaches by their
pruning-granularity: weights vs. channels vs. filters.
Weight-pruning [12, 7, 6, 4]: These approaches prune
network weights with small absolute magnitude (less
salient [12]). Weight-pruning reduces the network size,
which in turn reduces both DRAM access and energy con-
sumption on mobile devices [6]. However, weight-pruning
does not reduce the computational costs due to the irreg-
ular sparsity after pruning. Accordingly, a weight-pruned
network requires sparse BLAS libraries or specialized hard-
ware [3]. WELS can be regarded as a weight-pruning tech-
nique. However, WELS can be tweaked to reduce both the
network size and the computational cost. For instance, we
tweaked WELS to propose KELS for CNNs. For a fully
connected network (FCN), WELS can split the weights into
two independent halves with regular sparsity. With a regular
sparsity, KE delivers a slim, not sparse, FCN.
Channel-pruning [14, 18, 10]: Given the limitation
of weight-pruning and the complexity of filter-pruning,
channel-pruning provides a nice tradeoff between flexibil-
ity and ease of implementation. Yet, channel pruning ap-
proaches make assumptions. For instance, Liu et al. [14]
require a scaling layer or a batch norm layer; Huang et
al. [10] require group convolution support [11]. Accord-
ingly, these [14, 10] are CNN-specific approaches. Further-
more, some channel-pruning approaches (e.g., [18]) are ap-
plied after training a network. Thus, they do not introduce
any performance improvements.

Filter-pruning [13, 22, 15]: KELS belongs to the filter-
pruning category. It is easy to identify unimportant filters,
Li et al. [13] quantify filters’ importance using L1-Norm.
By removing – or splitting – unimportant filters, filter-
pruning reduces both the computational cost and the num-
ber of parameters. Thus, a filter-pruned network needs nei-
ther sparse BLAS libraries nor specialized hardware. These
advantages make filter-pruning appealing. Unfortunately,
it is challenging to remove the unimportant filters while
maintaining valid network connectivity. For instance, Li et
al. [13] apply filter-pruning on vanilla CNNs (e.g., VGG),
but require projection-shortcuts to support Res-Nets, and re-
quire further modification to support concatenation opera-
tions (e.g., GoogLeNet). Similarly, ThiNet [15] suffers on
Res-Nets and does not prune the last convolutional layer in
all residual blocks. In contrast, KELS supports both vanilla
and residual CNNs without bells and whistles.

KE+KELS removes – or splits – entire filters. This
saves both the number of operations (FLOPs) and param-
eters (memory). KELS imposes no constraints on the CNN
architecture or the loss function. These are key advantages,
but KE+KELS has limitations. For instance, KE re-trains
a neural network for a large number of generations. This
large training cost is not a hurdle for our paper because we
tackle the following question: how to train a deep network
on a relatively small dataset?

B. Appendix: Approach
The kernel-level convolutional-aware splitting (KELS)

technique supports both vanilla and residual networks.
However, KELS requires a simple modification to support
the concatenation operations (concat-op) in GoogLeNet and
DenseNet. Figures 1 and 2 illustrate how to handle con-
catenation in these networks. The main difference between
Fig. 1 and 2 is whether the concat-op is followed by a con-
volution or a batch-norm. To handle both variants, we keep
references to the preceding convolutional filters (e.g., F1

and F2 in Fig. 1). Using these references, we outline the fit-
hypothesis in the convolutional and batch-norm layers. In
this way, we split the network properly and make sure the
fit-hypothesis is a slim independent network.



Figure 1. A Split-Net illustration on a toy feature concatenation
operation using sr = 0.5. ‖ denotes a feature concatenation op-
eration. The dotted line shows the dimension of the feature map
after concatenation i.e., it is not part of the network. In this ex-
ample, feature concatenation is followed by a convolutional layer
F3 then a batch norm layer. This order of operations is employed
in both GoogLeNet and DenseNet. To split F3 properly (initialize
its split-mask M3), we keep references to the preceding convolu-
tional filters (F1 and F2). Through these references, we determine
for F3 whether an input channel belongs to the fit-hypothesis or
not.

Appendix Intuition #1: Dropout
In the paper, we have illustrated how Split-Nets resemble
dropout, i.e., both encourage neurons (subnetwork) to learn
an independent representation. However, Split-Nets target a
specific set of neurons (subnetwork). For instance, if a toy
network layer has 10 neurons, dropout promotes an inde-
pendent representation to all 10 neurons. In contrast, Split-
Nets promote an independent representation to the neurons
inside the fit-hypothesis H4 only. Thus, the split-mask M
provides a finer level of control.

After highlighting the resemblance between KE and
dropout, we want to emphasize that extending dropout
for CNNs (channel-dropout) seems trivial, but it is not.
Channel-dropout has been challenging because features in
deep layers have great specificity [20, 17]. For an input im-
age, a small fraction of channels is activated [21]. Thus, it
is important to treat channels unequally, i.e., uniform ran-
dom dropping is deficient. Consequently, Hou and Wang [9]
have proposed Weighted Channel Dropout (WCD). This ap-
proach adds three extra modules to a deep network: Global
Average Pooling, Weighted Random Selection, and Ran-
dom Number Generator. These three modules are added
to multiple convolutional layers.

Similar to KE, WCD [9] is applied during training.
However, WCD does not reduce the inference cost. In ad-
dition, Hou and Wang [9] apply WCD to certain –not all –
convolutional layers (e.g., res5a and res5c in ResNet-101).
Thus, WCD requires tuning per architecture.

Appendix Intuition #2: Residual Network
It is challenging to train a deep network on a small dataset.
This challenge stems from the large number of parameters
in a deep network. While all parameters are required for a

Figure 2. A Split-Net illustration on a toy feature concatenation
operation. In this example, feature concatenation is followed by
a batch norm layer then the convolutional layer F3. This order of
operations is employed in DenseNet.

large dataset, they become redundant and enable overfitting
on a small dataset. To mitigate overfitting, weight regular-
izers (e.g., weight-decay) have been proposed. These regu-
larizers reduce the network’s complexity by suppressing the
weights’ magnitudes, i.e., promote a zero-mapping.

A Res-Net splits a network into two branches: an identity
shortcut and residual subnetwork. This network-splitting
enables a zero-mapping in residual links since a default
identity mapping already exists. From this perspective, Res-
Nets resemble weight-decay in terms of favoring a simpler
subnetwork (e.g., R(x) = 0; ∀x). Yet, one difference is
that a Res-Net can suppress the residual subnetworks while
keeping the network’s depth intact.

Similar to Res-Nets, a Split-Net splits a network into two
branches: the fit-hypothesis H4 and the reset-hypothesis
HO. Split-Nets promote a zero mapping inside HO be-
cause, after the first generation,H4 is always closer to con-
vergence. A zero-mapping inside HO reduces the number
of active parameters, which in turn mitigates overfitting and
reduces the burden for data collection. If all weights inside
HO converge to zero, the network’s depth remains intact,
thanks to the fit-hypothesis H4.

C. Appendix: Experiments
C.1. Knowledge Evolution on Classification

We have used public implementations for our baselines:
RePr1, BANs2, AdaCos3, and CS-KD4. We leverage a pub-
lic implementation5 to profile the fit-hypothesis computa-
tional cost.

In the paper manuscript, Fig. 2 illustrates the KELS tech-
nique on a toy Res-Net. Table 1 uses the ResNet18 architec-
ture and a split-rate sr = 0.5 to present (1) the dimensions
of both the dense network N and the slim fit-hypothesis

1https://github.com/siahuat0727/RePr
2https://github.com/nocotan/born again neuralnet
3https://github.com/4uiiurz1/pytorch-adacos
4https://github.com/alinlab/cs-kd
5https://github.com/mitchellnw/micro-net-

dnw/blob/master/image classification/model profiling.py

https://github.com/siahuat0727/RePr
https://github.com/nocotan/born_again_neuralnet
https://github.com/4uiiurz1/pytorch-adacos
https://github.com/alinlab/cs-kd
https://github.com/mitchellnw/micro-net-dnw/blob/master/image_classification/model_profiling.py
https://github.com/mitchellnw/micro-net-dnw/blob/master/image_classification/model_profiling.py


Table 1. The dimensions of the ResNet18 N versus its fit-
hypothesis H4 with split-rate sr = 0.5. The last table-section
compares N and H4 through the number of operations and pa-
rameters (millions). The fit-hypothesis H4 is a slim independent
network with 102 logits (Flower-102).

Layers ResNet18 N Fit-hypothesis H4

conv1 64× 7× 7× 3 32× 7× 7× 3
bn1 64 32
layer1.0.conv1 64× 3× 3× 64 32× 3× 3× 32
layer1.0.bn1 64 32
layer1.0.conv2 64× 3× 3× 64 32× 3× 3× 32
layer1.0.bn2 64 32
layer1.1.conv1 64× 3× 3× 64 32× 3× 3× 32
layer1.1.bn1 64 32
layer1.1.conv2 64× 3× 3× 64 32× 3× 3× 32
layer1.1.bn2 64 32
layer2.0.conv1 128× 3× 3× 64 64× 3× 3× 32
layer2.0.bn1 128 64
layer2.0.conv2 128× 3× 3× 128 64× 3× 3× 64
layer2.0.bn2 128 64
layer2.0.downsample.0 128× 1× 1× 64 64× 1× 1× 32
layer2.0.downsample.1 128 64
layer2.1.conv1 128× 3× 3× 128 64× 3× 3× 64
layer2.1.bn1 128 64
layer2.1.conv2 128× 3× 3× 128 64× 3× 3× 64
layer2.1.bn2 128 64
layer3.0.conv1 256× 3× 3× 128 128× 3× 3× 64
layer3.0.bn1 256 128
layer3.0.conv2 256× 3× 3× 256 128× 3× 3× 128
layer3.0.bn2 256 128
layer3.0.downsample.0 256× 1× 1× 128 128× 1× 1× 64
layer3.0.downsample.1 256 128
layer3.1.conv1 256× 3× 3× 256 128× 3× 3× 128
layer3.1.bn1 256 128
layer3.1.conv2 256× 3× 3× 256 128× 3× 3× 128
layer3.1.bn2 256 128
layer4.0.conv1 512× 3× 3× 256 256× 3× 3× 128
layer4.0.bn1 512 256
layer4.0.conv2 512× 3× 3× 512 256× 3× 3× 256
layer4.0.bn2 512 256
layer4.0.downsample.0 512× 1× 1× 256 256× 1× 1× 128
layer4.0.downsample.1 512 256
layer4.1.conv1 512× 3× 3× 512 256× 3× 3× 256
layer4.1.bn1 512 256
layer4.1.conv2 512× 3× 3× 512 256× 3× 3× 256
layer4.1.bn2 512 256
fc 102× 512 102× 256

#Ops (G-Ops) 3.63 0.96
#Parameters 22.44 5.64

H4; (2) the computational cost of both N and H4. The
paper manuscript evaluates KE on DenseNet169 using the
WELS technique and a split-rate sr = 0.7. Tables 2
and 3 present quantitative classification evaluations on
DenseNet169 using KELS and WELS, respectively. Both
WELS and KELS evaluations use sr = 0.8.

In the paper manuscript, all experiments employ ran-
domly initialized networks. Yet, pretrained networks
achieve better performance on relatively small datasets. Ta-
ble 4 highlights the performance gap between ran-
domly initialized (CS-KD+KE) and ImageNet initialized
(CE+ImageNet) networks. The CE+ImageNet baseline pro-
vides an upper bound. The CS-KD+KE baseline use KELS
and sr = 0.8 with ResNet18, and WELS and sr = 0.7 with
DenseNet169, i.e., last rows in Tables 2 and 3. KE closes
the performance gap between randomly initialized and Im-

Table 2. Quantitative evaluation using DenseNet169 with KELS
and sr = 0.8, i.e., ≈ 36% sparsity.

Method Flower CUB Aircraft MIT Dog

CE (N1) 45.76 55.49 51.96 57.37 65.09
CE + KE-N3 (ours) 50.50 57.73 56.34 60.64 66.08
CE + KE-N10 (ours) 58.78 58.96 61.70 61.76 67.30

Smth (N1) 45.85 59.01 58.45 57.07 66.31
Smth + KE-N3 (ours) 53.69 62.38 63.18 59.52 68.00
Smth + KE-N10 (ours) 65.88 60.57 65.60 59.15 68.66

CS-KD (N1) 49.32 66.71 57.62 56.77 68.82
CS-KD + KE-N3 (ours) 59.67 69.63 59.43 57.14 70.66
CS-KD + KE-N10 (ours) 66.34 69.35 59.76 57.37 70.59

Table 3. Quantitative evaluation using DenseNet169 with WELS
and split-rate sr = 0.8, i.e., 20% sparsity.

Method Flower CUB Aircraft MIT Dog

CE (N1) 44.88 56.32 51.61 55.13 66.15
CE + KE-N3 (ours) 50.23 59.81 56.25 60.27 66.44
CE + KE-N10 (ours) 58.03 59.38 60.80 59.45 67.25

Smth (N1) 45.92 58.70 56.73 58.26 66.48
Smth + KE-N3 (ours) 54.84 62.41 62.68 60.49 67.98
Smth + KE-N10 (ours) 64.69 60.36 65.62 62.13 68.26

CS-KD (N1) 46.75 66.66 58.87 56.85 69.22
CS-KD + KE-N3 (ours) 58.27 69.67 60.98 57.51 70.94
CS-KD + KE-N10 (ours) 64.18 71.37 61.37 57.22 71.33

Table 4. Comparative evaluation between pretrained (CE + Ima-
geNet) and randomly initialized (CS-KD + KE) networks. The
performance of CE + ImageNet provides an upper-bound for KE.

Method Flower CUB Aircraft MIT Dog

ResNet18

CE + ImageNet 88.83 74.46 61.01 72.84 74.29
CS-KD + KE-N10 69.88 73.39 59.08 57.96 70.81

DenseNet169

CE + ImageNet 93.46 80.73 69.85 77.90 79.92
CS-KD + KE-N10 65.27 70.36 61.22 57.44 70.72

ageNet initialized networks significantly.
KE vs RePr
In the paper manuscript, we highlight two differences
between KE and RePr. Yet, there are other worth noting
differences. (I) RePr delivers a dense network only.
(II) RePr’s re-initialization step (QR decomposition) is
computationally expensive. (III) During training, RePr
prunes a different set of filters at different stages. If the
pruned filters are regarded as a reset-hypothesis, then RePr
changes the reset-hypothesis at different training stages. In
contrast, KE outlines both fit and reset hypotheses using a
single split-mask. This mask remains the same across all
generations.

KE vs DSD
DSD is a prominent training approach. Han et al. [5] eval-
uated DSD using various tasks: image classification, cap-
tion generation, and speech recognition. Surprisingly, the
DSD’s intuition is never discussed in its paper [5].

We claim that DSD is a special case of KE. To support



Algorithm 2: Workflow of DSD from [5]. The
λ = S[k] denotes the k-th largest weight where
k = |W | ∗ (1 − sparsity), and |W | is the num-
ber of weights inside a network.

Result: W (t)

1 W (0) ∼ N(0,Σ); // Randomly initialize W (0)

2 while not converged do // Dense Phase
3 W (t) = W (t−1) − η(t)∇f(W (t−1);xt−1);
4 t = t+ 1;
5 end
// Sparse Phase

6 S = sort(abs(W (t−1))) ; // descendingly

7 λ = S[k];
8 Mask = 1(abs(W (t−1)) > λ);
9 while not converged do

10 W (t) = W (t−1) − η(t)∇f(W (t−1);xt−1);
11 W (t) = W (t)Mask;
12 t = t+ 1;
13 end
14 while not converged do // Dense Phase
15 W (t) = W (t−1) − η(t)∇f(W (t−1);xt−1);
16 t = t+ 1;
17 end

this claim, we first summarize the DSD training approach
in Algorithm 2. In this algorithm, we focus on two steps:
Step #8 and Step #11. In Step #8, DSD outlines the less
important weights to be pruned using the binary variable
Mask. This step is similar to our network-splitting step
that outlines the fit and reset hypotheses through WELS.
However, WELS splits a network N randomly while DSD
splits N using a weight magnitude threshold.

Step #11 re-initializes the pruned weights to zero. Again,
this step is similar to our reset-hypothesis re-initialization
step. However, there are two differences. (1) We re-
initialize the reset-hypothesis randomly instead of zero-
values. If the re-initialization step is regarded as a noise
injection process, then DSD injects noise with a zero stan-
dard deviation. In contrast, KE injects noise with a non-zero
standard deviation. This difference is important because
the DSD’s noise (zero-values) is bad for KELS. KELS re-
initializes entire filters in the reset-hypothesis, i.e., a zero
filter is an inferior initialization. (2) KE injects noise ef-
ficiently, i.e., across generations only. In contrast, DSD
executes Step #11 for every training mini-batch. Con-
cretely, if we train a network on a dataset of size B, the re-
initialization cost isO(g×L) for KE, andO(g×e× B

b ×L)
for DSD, where g is the number of generations, e is the
number of epochs, L is the number of layers, and b is the
mini-batch size. The vanilla DSD assumes g = 1, but this
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Figure 3. Quantitative comparison between KE and KE+DSD.
(Top) The classification performance of the dense network
N . (Bottom) The performance of the slim fit-hypothesis H4.
Through KELS, H4 achieves 71.67% top-1 accuracy at g = 10.

is an inferior setting as we show next.
To highlight the similarity between KE and DSD quanti-

tatively, we modify the vanilla DSD training approach. We
keep the masking and re-initialization steps (Steps #8 and
#11), but change the phases into generations. The dense
and sparse phases become the old and even generations, re-
spectively. This modification means we do not resume the
learning rate lr scheduler between phases, but re-start the lr
scheduler across generations. Basically, we get rid of (1) the
hard three-phases constraint, (2) the loss convergence cri-
terion, and (3) the learning rate resumption across phases.
We refer to this DSD variant as KE+DSD. Similar to KE,
KE+DSD trains every generation for e = 200 epochs.

Fig. 3 compares KE with our proposed KE+DSD. We
train GoogLeNet for g = 10 generations on CUB-200. We
evaluate KE using both KELS and WELS. We use a split-
rate sr = 0.8 with KELS and sr = 0.7 with WELS. For
KE+DSD, we prune each layer to the default 30% spar-
sity. KE+DSD achieves comparable performance to the KE.
Yet, we want to highlight one subtle difference between KE
and KE+DSD. During training, KE allows all weights to
change. However, KE+DSD freezes 30% of the weights to
zero at the even generations – the original sparse phases –
through Step #11. This form of strict regularization gives
KE+DSD a marginal edge during even generations – the 8th

and the 10th generations in Fig. 3.
To conclude, DSD is a special case of KE. However, one

clear difference between DSD [5] and our paper is KELS.
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Figure 4. Quantitative retrieval evaluation using CUB-200 on both
GoogLeNet and ResNet50. Both networks are trained for 10 gen-
erations. (Left) Recall@1 of the dense network N . (Right) Re-
call@1 of the slim fit-hypothesis H4.

Through KELS, we learn both slim and dense networks si-
multaneously. Having said that, the main contribution of
our paper is how we present a deep network as a set of hy-
potheses. We introduce the idea of a fit-hypothesis to en-
capsulate a network’s knowledge. Then, we show how to
evolve this knowledge to boost performance on relatively
small datasets.

C.2. Knowledge Evolution on Metric Learning

Evaluation Metrics: For metric learning evaluation, we
leverage the Recall@K metric and Normalized Mutual
Info (NMI) on the test split. The NMI score evaluates the
quality of cluster alignments. NMI = I(Ω,C)√

H(Ω)H(C)
, where

Ω = {ω1, .., ωn}, is the ground-truth clustering, while
C = {c1, ...cn} is a clustering assignment for the learned
embedding. I(•, •) and H(•) denote mutual information and
entropy, respectively. We use K-means to compute C.
Results: In the paper, we report the retrieval performance
using the dense networkN . However, KELS delivers a slim
H4 as well. Figures 4 and 5 present quantitative retrieval
evaluation on CUB-200 and CARS196, respectively. Both
figures leverage the R@1 metric for quantitative evaluation.
We report the performance of both the dense network N
and the slim fit-hypothesis H4. As the number of genera-
tions increases, the retrieval performance increases for both
N and H4. Table 5 presents the fit-hypothesis H4 per-
formance and inference cost. The fit-hypothesis H4 per-
formance reaches the dense network N performance after
g = 10 generations; yet, H4 achieves this performance at
a significantly smaller inference cost.

D. Appendix: Ablation Study
In the paper manuscript, we have utilized VGG11 bn

to monitor the development of the fit and reset hypotheses
across generations. Fig. 6 shows the mean absolute values
(Ĥ4 and ĤO) inside the fit and reset hypotheses across all
eight convolutional layers.

In this section, we present three ablation studies. We (1)
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Figure 5. Quantitative retrieval evaluation using CARS196 on both
GoogLeNet and ResNet50. (Left) Recall@1 of the dense network
N . (Right) Recall@1 of the slim fit-hypothesis H4.

Table 5. Quantitative evaluation for KELS using the number of
both operations (G-Ops) and parameters (millions). R1g denotes
the recall@1 performance at the gth generation. Nops denotes the
relative reduction in the number of operations. Nr1 denotes the
absolute improvement margin on top of the dense baseline N1.

sr R11 R110 Nr1 #Ops Nops #Param

CUB on GoogLeNet

Ng 0.8 10.16 15.34 5.1% 3.00 - 11.44
H4g 4.12 15.61 5.4% 1.98 34.0% 7.43

CUB on ResNet50

Ng 0.8 13.01 18.25 5.2% 8.19 - 47.48
H4g 5.33 18.38 5.3% 5.32 35.0% 30.55

CARS on GoogLeNet

Ng 0.8 5.29 32.63 27.3% 3.00 - 11.44
H4g 2.53 32.85 27.5% 1.98 34.0% 7.43

CARS on ResNet50

Ng 0.8 11.63 42.36 30.7% 8.19 - 47.48
H4g 6.17 43.02 31.3% 5.32 35.0% 30.55

evaluate the impact of changing the split-mask M across
generations, (2) discuss why the improvement-margins of
KE differ among datasets, and (3) evaluate KE on a large
dataset, i.e., ImageNet [2].
(1) Changing the split-mask M across generations
In the paper manuscript, we split the network using a
split-mark M . The same mask is used to re-initialize ev-
ery generation. However, we also highlighted the simi-
larity between KE and dropout. Dropout does not drop
the same neurons during training. Thus, we investigate
the impact of changing the split-mask M across genera-
tions. This is possible with the WELS technique. In this
experiment, We use CUB-200, ResNet18, label smooth-
ing regularizer, the WELS technique, and four split-rates
sr = {0.2, 0.3, 0.5, 0.8}. We train N for 10 generations.
After each generation, we re-initialize M randomly, i.e., as
if we initialize it for the first time. We refer to this WELS
variant as WELS-Rand.

Fig. 7 compares WELS against WELS-Rand. With small
split-rates (sr = {0.2, 0.3}), WELS is significantly supe-
rior to WELS-Rand. However, as the split-rate increases
(sr = {0.5, 0.8}), both WELS and WELS-Rand become
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Figure 6. Quantitative evaluation using CUB-200 on VGG11 bn.
The x-axis denotes the number of generations. Ĥ4 and ĤO denote
the mean absolute value inside H4 and HO, respectively.

comparable. This happens because different fit-hypotheses,
in WELS+Rand, overlap partially. Given a split-rate sr, a
network-weight belongs to two consecutive fit-hypotheses
with probability s2

r . Accordingly, WELS-Rand with a small
sr flushes the entire knowledge of a parent network. In con-
trast, WELS-Rand with a large split-rate retains the parent-
network’s knowledge at least partially.
(2) Why the improvement margins Nacc of KE differ?
In deep learning, we assume that more training data leads
to better accuracy. However, the KE’s improvement mar-
gins Nacc contradict this assumption. For instance, Table 2
shows that Nacc on Flower-102 is bigger than Nacc on CUB-
200, i.e., 14.78 vs 5.68 after 10 generations with the CS-KD
regularizer. Fig. 1 also emphasizes this behavior; Flower-
102 is a much smaller dataset compared to CUB-200, yet
Nacc is over 20% for Flower-102 but less than 10% for CUB-
200. We posit that Nacc depends not only on the dataset size,
but also on the dataset simplicity.

To evaluate our postulate, we quantify the simplicity of
our five datasets (Flower, CUB, Aircraft, MIT, and Dog).
We create a new dataset, dubbed FCAMD, using the five
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Figure 7. Comparative evaluation between WELS and WELS-
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tions. In contrast, WELS-Rand randomly re-initialize M after ev-
ery generation. With a small split-rate, WELS-Rand flushes the
parent-networks’ knowledge.

Table 6. The KE’s improvement margins Nacc versus the FCAMD
accuracies on each dataset. There is a strong positive Pearson cor-
relation (r = 0.9529) between Nacc and the datasets’ simplicity
(FCAMD’s accuracies).

Datasets Nacc FCAMD Acc

Flower 14.78 63.06
CUB 5.68 19.60
Aircraft 0.93 15.80
MIT 0.59 19.20
Stanford Dogs 1.21 13.20

r = 0.952

0 20 40 60

0

5

10

15
FLW

CUB

AIRMIT
Dog

FCAMD Accuracy (FCAMD Acc)

K
E

im
pr

ov
em

en
tm

ar
gi

ns
N

ac
c

Figure 8. The average accuracy of the Flower (FLW), CUB, Air-
craft (AIR), MIT, and Dog datasets inside the FCAMD dataset.
The five datasets are equally represented inside FCAMD, i.e., 50
classes each and 10 images per class. The accuracy metric reflects
the simplicity of each dataset. The x-axis denotes the accuracy of
a dataset inside FCAMD and the y-axis denotes the KE improve-
ment margins. There is a strong positive correlation between the
datasets’ simplicity and the KE improvement margins.

datasets. We randomly sample 50 classes from each dataset.
For each class, we randomly sample 10 training and 10 test-



Table 7. The KE’s improvement margins Nacc versus the accura-
cies of a fine-tuned ResNet18. There is a strong positive Pearson
correlation (r = 0.850) between Nacc and the datasets’ simplicity
(fine-tuned ResNet18 accuracies).

Datasets Nacc Fine-tuned ResNet18

Flower 14.78 88.83
CUB 5.68 74.46
Aircraft 0.93 61.01
MIT 0.59 72.84
Stanford Dogs 1.21 74.29

r = 0.850

ing images. Thus, FCAMD has 2500 training and 2500 test-
ing images, i.e., 250 classes, 10 training images per class.
We train a ResNet18 from scratch on FCAMD. To quan-
tify the simplicity of each dataset, we measure the aver-
age accuracy of its 50 classes. Higher accuracy indicates a
simpler dataset. There is a strong positive Pearson correla-
tion (r = 0.9529) between the datasets’ simplicity (from
FCAMD’s accuracies) and the KE improvement margins
Nacc as shown in Fig. 8 and Table 6. To compute the Pear-
son correlation, we use the KE improvement margins Nacc
achieved after 10 generations on top of the CS-KD [19]
baseline, i.e., Nacc from the last section of Table 2. Even
if we dismissed Flower-102 as an outlier, the correlation
would become r = 0.494 for the remaining four datasets
(CUB, AIR, MIT, and Dog).

Another way to quantify the simplicity of a dataset is
through a pretrained network. A pretrained network con-
tains the ImageNet’s knowledge. This large knowledge mit-
igates the impact of both a small dataset size and a small
number of samples per class. Thus, we fine-tune a pre-
trained ResNet18 on the five datasets as shown in Table 4.
The accuracy of the fine-tuned ResNet18 reflects the sim-
plicity of each dataset. Higher accuracy indicates a simpler
dataset. Again, there is a strong positive Pearson correla-
tion (r = 0.850) between Nacc and the fine-tuned ResNet18
accuracies as shown in Fig. 9 and Table 7.

The FCAMD and fine-tuned ResNet18 experiments
present an interesting finding. It seems that the dataset size
is no longer the dominant factor that controls the perfor-
mance of a randomly initialized network on relatively small
datasets.
(3) Evaluate KE on ImageNet
Our paper tackles the following question: how to train a
deep network on a relatively small dataset? Answering this
question will have a significant impact on both academia
and industry. However, it is important to understand how
KE behaves on a large dataset, i.e., ImageNet. The goal of
this experiment is not to boost performance on ImageNet;
Stock et al. [16] and Beyer et al. [1] deliver strong argu-
ments why boosting performance on ImageNet should no
longer be an ultimate goal. While KE boosts performance
on ImageNet, our goal is to monitor the performance of the
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Figure 9. The accuracy of the Flower (FLW), CUB, Aircraft (AIR),
MIT, and Dog datasets on a fine-tuned ResNet18. The accuracy
metric reflects the simplicity of each dataset. The x-axis denotes
the accuracy of a dataset on a fine-tuned ResNet18 and the y-axis
denotes the KE improvement margins. There is a strong positive
correlation between the datasets’ simplicity and the KE improve-
ment margins.

fit-hypothesis. We want to answer the following question:
can KE evolve knowledge inside the fit-hypothesis even
when presented with a large dataset?
Technical Details: We train a ResNet18 for 5 generations
using KELS and a split-rate sr = 0.8, i.e., ≈ 36% sparsity.
Our implementation for ImageNet follows the practice
in [8]. We use a batch size b = 128, and a step learning rate
scheduler with a starting lr = 0.1. We train for e = 150
epochs per generation. Other parameters (e.g., momentum,
optimizer) are the same as those reported in the paper (Sec.
4.1).

Results: Fig. 10 presents a quantitative classification eval-
uation using ImageNet. KE boosts performance for both
the dense network N and the slim fit-hypothesis H4. In
the paper manuscript, we evaluate KE using relatively small
datasets and large architectures. In contrast, this experiment
evaluates KE using a large dataset and a small architecture.
Accordingly, these improvement margins on ImageNet are a
lower-bound on the potential of KE. As the architecture gets
bigger, these improvement margins will increase. Accord-
ingly, we conclude that KE can evolve knowledge inside the
fit-hypothesis.

We further evaluate KE on two larger architectures. Ta-
ble 8 presents quantitative classification evaluation using
ResNet34 and ResNet50. We use the same technical details
from the ResNet18 experiment. KE boosts performance on
the fit-hypothesis H4 consistently. This confirms our find-
ing that KE evolves knowledge in the fit-hypothesis H4.
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