
Supplementary Material for

Neural Geometric Level of Detail:

Real-time Rendering with Implicit 3D Shapes

Towaki Takikawa1,2,4* Joey Litalien1,3* Kangxue Yin1 Karsten Kreis1 Charles Loop1

Derek Nowrouzezahrai3 Alec Jacobson2 Morgan McGuire1,3 Sanja Fidler1,2,4

1NVIDIA 2University of Toronto 3McGill University 4Vector Institute

nv-tlabs.github.io/nglod

A. Implementation Details

A.1. Architecture

We set the hidden dimension for all (single hidden layer)

MLPs to h = 128. We use a ReLU activation function

for the intermediate layer and none for the output layer, to

support arbitrary distances. We set the feature dimension

for the SVO to m = 32 and initialize all voxel features

z ∈ Z using a Gaussian prior with σ = 0.01. We performed

ablations and discovered that we get satisfying quality with

feature dimensions as low as m = 8, but we keep m = 32
as we make bigger gains in storage efficiency by keeping the

octree depth shallower than we save by reducing the feature

dimension.

The resolution of each level of the SVO is defined as

rL = r0 · 2
L, where r0 = 4 is the initial resolution, capped

at Lmax ∈ {5, 6} depending on the complexity of the ge-

ometry. Note that the octree used for rendering (compare

Section 3.4) starts at an initial resolution of 13, but we do

not store any feature vectors until the octree reaches a level

where the resolution r0 = 4. Each level contains a maxi-

mum of rL
3 voxels. In practice, the total number is much

lower because surfaces are sparse in R
3, and we only allo-

cate nodes where there is a surface.

A.2. Sampling

We implement a variety of sampling schemes for the

generation of our pointcloud datasets.

Uniform. We first sample uniform random positions in

the bounding volume B = [−1, 1]3 by sampling three uni-

formly distributed random numbers.

Surface. We have two separate sampling algorithms, one

for meshes and one for signed distance functions. For

*Authors contributed equally.

meshes, we first compute per-triangle areas. We then se-

lect random triangles with a distribution proportional to the

triangle areas, and then select a random point on the trian-

gle using three uniformly distributed random numbers and

barycentric coordinates. For signed distance functions, we

first sample uniformly distributed points in B. We then

choose random points on a sphere to form a ray, and test

if the ray hits the surface with sphere tracing. We continue

sampling rays until we find enough rays that hit the surface.

Near. We can additionally sample near-surface points of

a mesh by taking the surface samples, and perturbing the

vector with random Gaussian noise with σ = 0.01.

A.3. Training

All training was done on a NVIDIA Tesla V100 GPU

using PyTorch [11] with some operations implemented in

CUDA. All models are trained with the Adam optimizer [5]

with a learning rate of 0.001, using a set of 500 000 points

resampled at every epoch with a batch size of 512. These

points are distributed in a 2:2:1 split of surface, near, and

uniform samples. We do not make use of positional encod-

ings on the input points.

We train our representation summing together the loss

functions of the distances at each LOD (see Equation (??)).

We use L2-distance for our individual per-level losses. For

ShapeNet150 and Thingi32, we train all LODs jointly. For

TurboSquid16, we use a progressive scheme where we train

the highest LOD Lmax first, and add new trainable levels

ℓ = Lmax − 1, Lmax − 2, . . . every 100 epochs. This train-

ing scheme slightly benefits lower LODs for more complex

shapes.

We briefly experimented with different choices of hyper-

parameters for different architectures (notably for the base-

lines), but discovered these sets of hyperparameters worked

well across all models.

1

https://nv-tlabs.github.io/nglod

A.4. Rendering

We implement our baseline renderer using Python and

PyTorch. The sparse renderer is implemented using CUDA,

cub [8], and libtorch [11]. The implementation takes care-

ful advantage of kernel fusion while still making the algo-

rithm agnostic to the architecture. The ray-AABB intersec-

tion uses Marjercik et. al. [7]. Section C provides more

details on the sparse octree intersection algorithm.

In the sphere trace, we terminate the algorithm for each

individual ray if the iteration count exceeds the maximum or

if the stopping criteria d̂ < δ is reached. We set δ = 0.0003.

In addition, we also check that the step is not oscillating:

|d̂k − d̂k−1| < 6δ and perform far plane clipping with depth

5. We bound the sphere tracing iterations to k = 200.

The shadows in the renders are obtained by tracing

shadow rays using sphere tracing. We also enable SDF

ambient occlusion [3] and materials through matcaps [15].

Surface normals are obtained using finite differences. As

noted in the main paper, the frametimes measured only in-

clude the primary ray trace and normal computation time,

and not secondary effects (e.g. shadows).

B. Experiment Details

B.1. Baselines

In this section, we outline the implementation details

for DeepSDF [10], Fourier Feature Network (FFN) [16],

SIREN [14], and Neural Implicits [2]. Across all baselines,

we do not use an activation function at the very last layer to

avoid restrictions on the range of distances the models can

output. We find this does not significantly affect the results.

DeepSDF. We implement DeepSDF as in the paper, but

remove weight normalization [13], since we observe im-

proved performance without it in our experimental settings.

We also do not use latent vectors, and instead use just the

spatial coordinates as input to overfit DeepSDF to each spe-

cific shape.

Fourier Feature Network. We also implement FFN fol-

lowing the paper, and choose σ = 8 as it seems to provide

the best overall trade-off between high-frequency noise and

detail. We acknowledge that the reconstruction quality for

FFN is very sensitive to the choice of this hyperparameter;

however, we find that it is time-consuming and therefore

impractical to search for the optimal σ per shape.

SIREN. We implement SIREN following the paper, and

also utilize the weight initialization scheme in the paper.

We do not use the the Eikonal regularizer |∇f | = 1 for our

loss function (and use a simple L2-loss function across all

baselines), because we find that it is important to be able

to fit non-metric SDFs that do not satisfy the Eikonal equa-

tion constraints. Non-metric SDFs are heavily utilized in

practice to make SDF-based content creation easier.

Neural Implicits. We implement Neural Implicits without

any changes to the paper, other than using our sampling

scheme to generate the dataset so we can control training

variability across baselines.

B.2. Reconstruction Metrics

Geometry Metrics. Computing the Chamfer-L1 distance

requires surface samples, of both the ground-truth mesh as

well as the predicted SDF. Typically, these are obtained for

the predicted SDF sampling the mesh extracted with March-

ing Cubes [6] which introduces additional error. Instead,

we obtain samples by sampling the SDF surface using ray

tracing. We uniformly sample 217 = 131 072 points in the

bounding volume B, each assigned with a random spheri-

cal direction. We then trace each of these rays using sphere

tracing, and keep adding samples until the minimum num-

ber of points are obtained. The stopping criterion is the

same as discussed in A.4. We use the Chamfer distance

as implemented in PyTorch3D [12].

Image Metrics. We compute the Normal-L2 score by sam-

pling 32 evenly distributed, fixed camera positions using a

spherical Fibonacci sequence with radius 4. Images are ren-

dered at resolution 512× 512 and surface normals are eval-

uated against interpolated surface normals from the refer-

ence mesh. We evaluate the normal error only on the inter-

section of the predicted and ground-truth masks, since we

separately evaluate mask alignment with intersection over

union (iIoU). We use these two metrics because the shape

silhouettes are perceptually important and surface normals

drive the shading. We use 4 samples per pixel for both im-

ages, and implement the mesh renderer using Mitsuba 2 [9].

C. Sparse Ray-Octree Intersection

We provide more details for the subroutines appearing

in Algorithm 1. Pseudo code for the procedure DECIDE is

listed below:

1: procedure DECIDE(R,N(ℓ), ℓ)

2: for all t ∈ {0, . . . , |N(ℓ)| − 1} do in parallel

3: {i, j} ← N
(ℓ)
t

4: ifRi ∩ V
(ℓ)
j then

5: if ℓ = L then

6: Dt ← 1
7: else

8: Dt ← NUMCHILDREN(V ℓ
j)

9: else

10: Dt ← 0

11: return D

2

The DECIDE procedure determines the voxel-ray pairs

that result in intersections. The procedure runs in parallel

over (threads) t (line 2). For each t, we fetch the ray and

voxel indices i and j (line 3). If ray Ri intersects voxel

V
(ℓ)
j (line 4), we check if we have reached the final level L

(line 5). If so, we write a 1 into list D at position t (line

6). Otherwise, we write the NUMCHILDREN of V
(ℓ)
j (i.e.,

the number of occupied children of a voxel in the octree)

into list D at position t (line 8). If rayRi does not intersect

voxel V
(ℓ)
j , we write 0 into list D at position t (line 10). The

resulting list D is returned to the caller (line 11).

Next, we compute the Exclusive Sum of D and store the

resulting list in S. The Exclusive Sum S of a list of numbers

D is defined as

Si =

{
0 if i = 0,∑i−1

j=0 Dj otherwise.

Note that while this definition appears inherently serial,

fast parallel methods for EXCLUSIVESUM are available that

treat the problem as a series of parallel reductions [1, 4].

The exclusive sum is a powerful parallel programming con-

struct that provides the index for writing data into a list from

independent threads without conflicts (write hazards).

This can be seen in the pseudo code for procedure COM-

PACTIFY called at the final step of iteration in Algorithm 1:

1: procedure COMPACTIFY(N(ℓ),D,S)

2: for all t ∈ {0, . . . , |N(ℓ)| − 1} do in parallel

3: if Dt = 1 then

4: k ← St

5: N
(ℓ+1)
k ← N

(ℓ)
t

6: return N
(ℓ+1)

The COMPACTIFY subroutine removes all ray-voxel

pairs that do not result in an intersection (and thus do not

contribute to S). This routine is run in parallel over t (line

2). When Dt = 1, meaning voxel Vℓ
t was hit (line 3), we

copy the ray/voxel index pair from N
(ℓ)
t to its new location

k obtained from the exclusive sum result St (line 4), N(ℓ+1)

(line 5). We then return the new list N(ℓ+1) to the caller.

If the iteration has not reached the final step, i.e. l 6= L

in Algorithm 1, we call SUBDIVIDE listed below:

1: procedure SUBDIVIDE(N(ℓ),D,S)

2: for all t ∈ {0, . . . , |N(ℓ)| − 1} do in parallel

3: if Dt 6= 0 then

4: {i, j} ← N
(ℓ)
t

5: k ← St

6: for c ∈ ORDEREDCHILDREN(Ri, V
(ℓ)
j) do

7: N
(ℓ+1)
k ← {i, c}

8: k ← k + 1

9: return N
ℓ+1

The SUBDIVIDE populates the next list N(ℓ+1) by sub-

dividing out N(ℓ). This routine is run in parallel over t (line

2). When Dt 6= 0, meaning voxel V
(ℓ)
t was hit (line 3), we

do the following: We load the ray/voxel index pair {i, j}
from N

ℓ
t (line 4). The output index k for the first child voxel

index is obtained (line 5). We then iterate over the ordered

children of the current voxel V
(ℓ)
j using iterator ORDERED-

CHILDREN (line 6). This iterator returns the child voxels of

V
(ℓ)
j in front-to-back order with respect to ray Ri. This or-

dering is only dependant on which of the 8 octants of space

contains the origin of the ray, and can be stored in a pre-

computed 8× 8 table. We write the ray/voxel index pair to

the new list N(ℓ+1) at position k (line 7). The output index k

is incremented (line 8), and the resulting list of (subdivided)

ray/voxel index pairs (line 9).

D. Additional Results

More result examples from each dataset used can be

found in the following pages. We also refer to our supple-

mentary video for a real-time demonstration of our method.

E. Artist Acknowledgements

We credit the following artists for the 3D assets used in

this work. In alphabetical order: 3D Aries (Cogs), abrams-

design (Cabin), the Art Institute of Chicago (Lion), Diste-

fan (Train), DRONNNNN95 (House), Dmitriev Vasiliy (V

Mech), Felipe Alfonso (Cheese), Florian Berger (Oldcar),

Gary Warne (Mobius), Inigo Quilez (Snail), klk (Teapot),

Martijn Steinrucken (Snake), Max 3D Design (Robot),

monsterkodi (Skull), QE3D (Parthenon), RaveeCG (Horse-

man), sam rus (City), the Stanford Computer Graphics Lab

(Lucy), TheDizajn (Boat), Xor (Burger, Fish), your artist

(Chameleon), and zames1992 (Cathedral).

3

DeepSDF [10] FFN [16] SIREN [14] Neural Implicits [2] Reference

Ours / LOD 2 Ours / LOD 3 Ours / LOD 4 Ours / LOD 5 Ours / LOD 6

DeepSDF [10] FFN [16] SIREN [14] Neural Implicits [2] Reference

Ours / LOD 2 Ours / LOD 3 Ours / LOD 4 Ours / LOD 5 Ours / LOD 6

DeepSDF [10] FFN [16] SIREN [14] Neural Implicits [2] Reference

Ours / LOD 1 Ours / LOD 2 Ours / LOD 3 Ours / LOD 4 Ours / LOD 5

Figure 1: Additional TurboSquid16 Results. FFN exhibits white patch artifacts (e.g. City and Cabin) because it struggles to learn a

conservative metric SDF, resulting in the sphere tracing algorithm missing the surface entirely. Best viewed zoomed in.

4

DeepSDF [10] FFN [16] SIREN [14] Neural Implicits [2] Reference

Ours / LOD 1 Ours / LOD 2 Ours / LOD 3 Ours / LOD 4 Ours / LOD 5

DeepSDF [10] FFN [16] SIREN [14] Neural Implicits [2] Reference

Ours / LOD 1 Ours / LOD 2 Ours / LOD 3 Ours / LOD 4 Ours / LOD 5

Figure 2: Additional Thingi32 Results. Best viewed zoomed in.

5

DeepSDF [10] FFN [16] SIREN [14] Neural Implicits [2] Reference

Ours / LOD 1 Ours / LOD 2 Ours / LOD 3 Ours / LOD 4 Ours / LOD 5

DeepSDF [10] FFN [16] SIREN [14] Neural Implicits [2] Reference

Ours / LOD 1 Ours / LOD 2 Ours / LOD 3 Ours / LOD 4 Ours / LOD 5

DeepSDF [10] FFN [16] SIREN [14] Neural Implicits [2] Reference

Ours / LOD 1 Ours / LOD 2 Ours / LOD 3 Ours / LOD 4 Ours / LOD 5

Figure 3: Additional ShapeNet150 Results. Our method struggles with thin flat features with little to no volume, such as Jetfighter wings

and the back of the Chair. Best viewed zoomed in.

6

References

[1] Guy E. Blelloch. Vector models for data-parallel computing.

MIT Press, 1990. 3

[2] Thomas Davies, Derek Nowrouzezahrai, and Alec Jacobson.

On the effectiveness of weight-encoded neural implicit 3D

shapes. arXiv preprint arXiv:2009.09808, 2020. 2, 4, 5, 6

[3] Alex Evans. Fast approximations for global illumination on

dynamic scenes. In ACM SIGGRAPH 2006 Courses, SIG-

GRAPH ’06, page 153–171, 2006. 2

[4] Mark Harris, Shubhabrata Sengupta, and John D Owens.

Parallel prefix sum (scan) with cuda. GPU gems, 3(39):851–

876, 2007. 3

[5] Diederik P. Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014. 1

[6] William E. Lorensen and Harvey E. Cline. Marching cubes:

A high resolution 3D surface construction algorithm. In

Proceedings of the 14th Annual Conference on Computer

Graphics and Interactive Techniques, SIGGRAPH ’87, page

163–169, 1987. 2

[7] Alexander Majercik, Cyril Crassin, Peter Shirley, and Mor-

gan McGuire. A ray-box intersection algorithm and efficient

dynamic voxel rendering. Journal of Computer Graphics

Techniques (JCGT), 7(3):66–81, September 2018. 2

[8] Duane Merrill. CUB: a library of warp-wide, block-wide,

and device-wide GPU parallel primitives, 2017. 2

[9] Merlin Nimier-David, Delio Vicini, Tizian Zeltner, and Wen-

zel Jakob. Mitsuba 2: A retargetable forward and inverse

renderer. ACM Trans. Graph., 38(6), Nov. 2019. 2

[10] Jeong Joon Park, Peter Florence, Julian Straub, Richard

Newcombe, and Steven Lovegrove. DeepSDF: Learning

continuous signed distance functions for shape representa-

tion. In IEEE Conf. Comput. Vis. Pattern Recog., June 2019.

2, 4, 5, 6

[11] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,

James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, et al. PyTorch: An

imperative style, high-performance deep learning library. In

Adv. Neural Inform. Process. Syst., pages 8026–8037, 2019.

1, 2

[12] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Taylor

Gordon, Wan-Yen Lo, Justin Johnson, and Georgia Gkioxari.

Accelerating 3D deep learning with PyTorch3D. arXiv

preprint arXiv:2007.08501, 2020. 2

[13] Tim Salimans and Durk P. Kingma. Weight normalization:

A simple reparameterization to accelerate training of deep

neural networks. In Adv. Neural Inform. Process. Syst., vol-

ume 29, pages 901–909, 2016. 2

[14] Vincent Sitzmann, Julien N. P. Martel, Alexander W.

Bergman, David B. Lindell, and Gordon Wetzstein. Implicit

neural representations with periodic activation functions. In

Adv. Neural Inform. Process. Syst., 2020. 2, 4, 5, 6

[15] Peter-Pike J Sloan, William Martin, Amy Gooch, and Bruce

Gooch. The lit sphere: a model for capturing NPR shading

from art. In Proceedings of Graphics Interface 2001, pages

143–150, 2001. 2

[16] Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara

Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-

mamoorthi, Jonathan T. Barron, and Ren Ng. Fourier fea-

tures let networks learn high frequency functions in low

dimensional domains. Adv. Neural Inform. Process. Syst.,

2020. 2, 4, 5, 6

7

