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We organize our supplementary material into five ap-
pendix sections, consisting of: a) PSFs simulation: deriva-
tion of the disparity-dependent PSFs; b) Reconstruction net-
works: architecture details of the RGB and depth recon-
struction networks; c) Mask fabrication: details of mask
fabrication using Nanoscirbe; d) System calibration: stereo
rectification and PSFs calibration procedures; e) More com-
parison results.

Appendix A. PSFs simulation
In this section, we derive our disparity-dependent PSF

based on the Fourier Optics theory [4], according to which
the PSF is computed as the squared Fourier transform of
the pupil function. The pupil function depends on the mask
pattern inserted in the aperture, and can be represented as a
complex-valued function.

P (x1, y1) = A(x1, y1) exp i(φM (x1, y1) + φDF (x1, y1)). (1)

where (x1, y1) is the spatial coordinate on the mask plane,
ans A(x1, y1) is a circular amplitude function with respect
to aperture radius R

A(x1, y1) =

{
1, x21 + y21 ≤ R2

0, otherwise.
(2)

φM (x1, y1) denotes the phase shift induced by the phase
mask

φM (x1, y1) = k∆nh(x1, y1). (3)

where k = 2π/λ is the wave vector, h(x1, y1) is the phase
mask height map, and ∆n is the reflective index difference
between the air and the mask material. φDF (x1, y1) denotes
the quadratic defocus phase, which is related to the in-focus
depth z0 and the actual depth z of a scene point.

φDF (x1, y1) =
k

2
(
1

z
− 1

z0
)(x21 + y21). (4)

Given the inverse relation between depth z and binocular
disparity d, i.e. d = bf/z , the defocus phase can be further
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(c) DispNetC (d) DispSharpNet

Figure 1. Disparity prediction using DispSharpNet with an ex-
tra encoder-decoder module. (a) Input coded images. (b) Dis-
parity ground truth. (c) Prediction using DispNetC [5] without
the encoder-decoder module. (d) Prediction using DispSharpNet
with the encoder-decoder module. DispSharpNet encourages the
disparity estimation with clearer details and sharper boundaries.

derived as

φDF (x1, y1) =
k

2fb
(d− d0)(x21 + y21). (5)

where f is the focal length, b is the baseline between
the left/right cameras, and d0 is the corresponding dispar-
ity value at the in-focus depth z0. Thus, our disparity-
dependent PSF can be computed as

PSF (x1, y1) ∝ |F{P (x1, y1)}|2. (6)

Appendix B. Reconstruction networks
We use a U-Net and a DispSharpNet to reconstruct the

disparity map and sharp texture images, respectively. The
detailed architectures of the networks are shown in Table 1
and 3.

The DispSharpNet adopts the structure of DispNetC [5],
which is computationally efficient both in terms of mem-
ory and runtime providing the potential to achieve real-time



Name Layer description Output dimension Input
down1 1 3×3, 32 conv H×W×32 input image
down1 2 3×3, 32 conv H×W×32 down1 1
down2 0 2×2, max pool 1/2H×1/2W×32 down1 2
down2 1 3×3, 64 conv 1/2H×1/2W×64 down2 0
down2 2 3×3, 64 conv 1/2H×1/2W×64 down2 1
down3 0 2×2, max pool 1/4H×1/4W×64 down2 2
down3 1 3×3, 128 conv 1/4H×1/4W×128 down3 0
down3 2 3×3, 128 conv 1/4H×1/4W×128 down3 1
down4 0 2×2, max pool 1/8H×1/8W×128 down3 2
down4 1 3×3, 256 conv 1/8H×1/8W×256 down4 0
down4 2 3×3, 256 conv 1/8H×1/8W×256 down4 1
down5 0 2×2, max pool 1/16H×1/16W×256 down4 2
down5 1 3×3, 512 conv 1/16H×1/16W×512 down5 0
down5 2 3×3, 512 conv 1/16H×1/16W×512 down5 1

up4 0 2×2, upsamp 1/8H×1/8W×256 down5 2
up4 1 3×3, 256 conv 1/8H×1/8W×256 [up4 0,down4 2]
up4 2 3×3, 256 conv 1/8H×1/8W×256 up4 1
up3 0 2×2, upsamp 1/4H×1/4W×128 up4 2
up3 1 3×3, 128 conv 1/4H×1/4W×128 [up3 0,down3 2]
up3 2 3×3, 128 conv 1/4H×1/4W×128 up3 1
up2 0 2×2, upsamp 1/2H×1/2W×64 up3 2
up2 1 3×3, 64 conv 1/2H×1/2W×64 [up2 0,down2 2]
up2 2 3×3, 64 conv 1/2H×1/2W×64 up2 1
up1 0 2×2, upsamp H×W×32 up2 2
up1 1 3×3, 32 conv H×W×32 [up1 0,down1 2]
up1 2 3×3, 32 conv H×W×32 up1 1
up1 3 1×1, 3 conv H×W×3 up1 2
output tanh(up1 3)+input H×W×3 up1 3

Table 1. Architecture of U-Net for RGB image reconstrucion.
The residual image, tanh(up1 3), is learned to encourage high-
frequency information recovery.

F8 lens CodedStereo
Time EPE 3px(%) EPE 3px(%)

DispNetC[5] 60ms 1.921 10.44% 1.738 9.18%
DispSharpNet 111ms 1.815 9.79% 1.512 7.85%
DeepPruner[3] 182ms 1.649 8.07% 1.494 6.69%

PSMNet[1] 410ms 1.613 8.17% 1.488 6.86%

Table 2. Comparison between conventional stereo and our
CodedStereo. Independent of the network architecture used for
stereo reconstruction, CodedStereo results in significant perfor-
mance improvements. Shown above are performance comparisons
using four different base network architectures.

inference. DispNetC makes use of an explicit 1D corre-
lation layer that can provide sharper edge estimation and
smoother area filling. We modify it by adding extra de-
convolution layers to predict full-resolution disparity maps.
We also apply an encoder-decoder module in the feature ex-
traction step to encourage disparity estimations with clearer
details and sharper boundaries. Comparisons of disparity
prediction using DispNetC and DispSharpNet are shown in
Figure 1. We also compare our CodedStereo with the con-
ventional stereo on various stereo reconstruction networks.
As shown in Table 2, CodedStereo results in significant per-
formance improvements on all the network architectures we
tested.

Appendix C. Mask fabrication
We fabricated our mask using two-photon lithography

(Photonic Professional GT Nanoscribe 3D printer). The

Name Layer description Output dimension Input
input H×W×3

Feature Extraction
down1 1 3×3, 32 conv H×W×32 input
down1 2 3×3, 32 conv H×W×32 down1 1
down2 0 2×2, max pool 1/2H×1/2W×32 down1 2
down2 1 3×3, 64 conv 1/2H×1/2W×64 down2 0
down2 2 3×3, 64 conv 1/2H×1/2W×64 down2 1
down3 0 2×2, max pool 1/4H×1/4W×64 down2 2
down3 1 3×3, 128 conv 1/4H×1/4W×128 down3 0
down3 2 3×3, 128 conv 1/4H×1/4W×128 down3 1
down4 0 2×2, max pool 1/8H×1/8W×128 down3 2
down4 1 3×3, 256 conv 1/8H×1/8W×256 down4 0
down4 2 3×3, 256 conv 1/8H×1/8W×256 down4 1
down5 0 2×2, max pool 1/16H×1/16W×256 down4 2
down5 1 3×3, 512 conv 1/16H×1/16W×512 down5 0
down5 2 3×3, 512 conv 1/16H×1/16W×512 down5 1

up4 0 2×2, upsamp 1/8H×1/8W×256 down5 2
up4 1 3×3, 256 conv 1/8H×1/8W×256 [up4 0,down4 2]
up4 2 3×3, 256 conv 1/8H×1/8W×256 up4 1
up3 0 2×2, upsamp 1/4H×1/4W×128 up4 2
up3 1 3×3, 128 conv 1/4H×1/4W×128 [up3 0,down3 2]
up3 2 3×3, 128 conv 1/4H×1/4W×128 up3 1
up2 0 2×2, upsamp 1/2H×1/2W×64 up3 2
up2 1 3×3, 64 conv 1/2H×1/2W×64 [up2 0,down2 2]
up2 2 3×3, 64 conv 1/2H×1/2W×64 up2 1
up1 0 2×2, upsamp H×W×32 up2 2
up1 1 3×3, 32 conv H×W×32 [up1 0,down1 2]
up1 2 3×3, 32 conv H×W×32 up1 1
up1 3 1×1, 3 conv H×W×3 up1 2
conv1 7×7, 64 conv, str2 1/2H×1/2W×64 tanh(up1 3)+input
conv2 5×5, 128 conv, str2 1/4H×1/4W×128 conv1

conv rdi 1×1, 32 conv 1/4H×1/4W×32 conv2
1D Correlation Layer

corr lr left/shifted right 1/4H×1/4W×48 [conv2 l,conv2 r]
Disparity Regression

conv3 1 5×5, 256 conv, str2 1/8H×1/8W×256 [corr lr,conv rdi]
conv3 2 3×3, 256 conv 1/8H×1/8W×256 conv3 1
conv4 1 3×3, 512 conv, str2 1/16H×1/16W×512 conv3 2
conv4 2 3×3, 512 conv 1/16H×1/16W×512 conv4 1
conv5 1 3×3, 512 conv, str2 1/32H×1/32W×512 conv4 2
conv5 2 3×3, 512 conv 1/32H×1/32W×512 conv5 1
conv6 1 3×3, 1024 conv, str2 1/64H×1/64W×1024 conv5 2
conv6 2 3×3, 1024 conv 1/64H×1/64W×1024 conv6 1

pr6+loss6 3×3, 1 conv 1/64H×1/64W×1 conv6 2
iconv5 1 4×4, 512 deconv, str2 1/32H×1/32W×512 conv6 2
iconv5 2 3×3, 512 conv 1/32H×1/32W×512 [i5 1,pr6,c5 2]
pr5+loss5 3×3, 1 conv 1/32H×1/32W×1 conv5 2
iconv4 1 4×4, 256 deconv, str2 1/16H×1/16W×256 conv5 2
iconv4 2 3×3, 256 conv 1/16H×1/16W×256 [i4 1,pr5,c4 2]
pr4+loss4 3×3, 1 conv 1/16H×1/16W×1 conv4 2
iconv3 1 4×4, 128 deconv, str2 1/8H×1/8W×128 conv4 2
iconv3 2 3×3, 128 conv 1/8H×1/8W×128 [i3 1,pr4,c3 2]
pr3+loss3 3×3, 1 conv 1/8H×1/8W×1 conv3 2
iconv2 1 4×4, 64 deconv, str2 1/4H×1/4W×64 conv3 2
iconv2 2 3×3, 64 conv 1/4H×1/4W×64 [i2 1,pr3,c2 2]
pr2+loss2 3×3, 1 conv 1/4H×1/4W×1 conv2 2
iconv1 1 4×4, 32 deconv, str2 1/2H×1/2W×32 conv2 2
iconv1 2 3×3, 32 conv 1/2H×1/2W×32 [i1 1,pr2,c1 2]
pr1+loss1 3×3, 1 conv 1/2H×1/2W×1 conv1 2

iconv0 4×4, 16 deconv, str2 H×W×16 conv1 2
pr0+loss0 5×5, 1 conv H×W×1 [i0,pr2,input]

Table 3. Architecture of DispSharpNet for disparity predic-
tion. The encorder-decorder module consists of the contracting
part (down1 1 to down5 2) and the expanding part (up4 0 to
up1 3), followed by the 1D correlation layer corr lr and the dis-
parity regression (conv3 1 to iconv0/pr0). The final prediction
output is pr0 (the same size as input images). In the input descrip-
tion, iN is short for iconvN , and cN is short for convN .

mask was fabricated using IP-Dip resist with a 63× immer-
sion objective (Drill mode) on a 170µm-thick fused silica



(b) Blur/sharp image pairs

(a) Left/right image pairs

(c) Captured image (d) Without rectification

(e) Without finetune (f) With rectification and finetune

Figure 2. Rectification and PSFs calibration in real experiment.
The checkerboards in the left/right image pair are used for recti-
fication, and the binary patterns in the blur/sharp image pair are
used for PSFs estimation. Artifacts are shown in the predicted dis-
parity map without the rectification and/or the networks finetuning
(with the calibrated PSFs).

substrate. Both the hatching distance (along x-y) and the
slicing distance (along z) were set to be 200nm. In partic-
ular, the printing laser scanned at a speed of 10mm/s with
a power of 50%. After printing, the mask was developed
in SU-8 developer for 10mins and cleaned in isopropanol
(IPA) for 5mins. The refractive indices of the fabricated
mask (after polymerization) are around 1.5414 (at 620nm),
1.5472 (at 540nm) and 1.5562 (at 460nm) [2].

Appendix D. System calibration
As our system couples stereo correspondence and blur

information together, we calibrate both the correspondence
and the PSFs simultaneously. In particular, we use a cal-
ibration target as shown in Figure 2. The random binary
pattern in the center is used for the PSF estimation, and the
checkerboard around it is used for stereo rectification. We
follow the PSF calibration procedure in [7] that estimates
the PSF from a pair of blur/sharp images by solving a de-
convolution problem. The blur image is captured using our
lens with the phase mask, and the sharp image is captured
by a reference lens with focus adjusted to different depths.
To count for the misalignment between simulation and real
experiment, we finetune our networks with the calibrated
PSF for the best performance.

(a) EDOF image (b) e2eEDOF

(c) Ours (d) Ground truth

Figure 3. Comparison with e2eEDOF mask [6] in simulation.
Our phase mask is end-to-end optimized together with both the
RGB reconstruction network and the disparity prediction network,
and thus can produce precise, pixel-to-pixel correspondence with
clearer details and sharper edges than the e2eEDOF mask. Addi-
tionally, our optimized PSFs come with some variations along the
disparity axis, providing a complementary cue to assist the dis-
parity prediction of problematic areas, as pointed to by the pink
arrow.

For rectification, a pair of left/right images, captured
with our lens sliding from left to right, are used to estimate
the misalignment across two views. Comparisons of dispar-
ity prediction results with and without rectification/finetune
are shown in Figure 2.

Appendix E. More comparison results
We show more qualitative results of the reconstructed

RGB images and the disparity maps of our CodedStereo
system, and compare them to the other methods.

In Figure 3, we compare our design with the e2eEDOF
mask [6] in simulation. Results show that our design out-
performs the e2eEDOF mask by providing precise, pixel-to-
pixel correspondence with clearer details and sharper edges.
Additionally, our optimized PSFs come with some varia-
tions along the disparity axis, providing a complementary
cue to assist the disparity prediction of problematic areas.

In Figure 4, we compare conventional stereo and our
CodedStereo under different exposures in real experiments,
and show our significant improvements over the conven-
tional design.

References
[1] Jia-Ren Chang and Yong-Sheng Chen. Pyramid stereo match-

ing network. In CVPR, 2018. 2
[2] Stephan Dottermusch, Dmitry Busko, Malte Langenhorst, Ul-

rich W Paetzold, and Bryce S Richards. Exposure-dependent
refractive index of nanoscribe ip-dip photoresist layers. Opt.
letters, 2019. 3

[3] Shivam Duggal, Shenlong Wang, Wei-Chiu Ma, Rui Hu, and
Raquel Urtasun. Deeppruner: Learning efficient stereo match-
ing via differentiable patchmatch. In ICCV, 2019. 2



E
xp

os
ur

e 
tim

e:
 6

00
m

s
E

xp
os

ur
e 

tim
e:

 4
00

m
s

E
xp

os
ur

e 
tim

e:
 2

00
m

s

Captured image PredictionPredictionCaptured image

0

100
0

100
0

100

(a) Conventional F8 Lens (b) Ours
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predicted disparity maps of the conventional F8 system. Right:
the captured images and predicted disparity maps of our Coded-
Stereo system. Our system outperforms conventional F8 under
different exposure levels.
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