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1. Additional Implementation details

Network architectures. Here we give detailed network
designs for each part. Figure 1 shows the architecture of
our encoder. We use instance partial convolution and in-
stance average pooling to get the parameters of each in-
stance independently. The architecture of generator net-
work is shown in Figure 2. The synthesis process starts
with a random noise and goes through a series of the pro-
posed INADE ResBIKs. Since the training is carried out
on multiple GPUs, the batch normalization layer in INADE
adopts the synchronous version. We use a multi-scale Path-
GAN [2] based discriminator whose architecture is shown
in Figure 3.

Loss function. The loss function we adopted consists of
four components:

Conditional adversarial loss. Let £ be the prior noise
remapping, G be the INADE generator, D be the discrimi-
nator, m be a given semantic mask, o and p be the corre-
sponding image and instance map. The conditional adver-
sarial loss built with hinge loss is formulated as:

Lean(€,G, D) = E[maz(0,1 — D(o, m,p))]

+E[maz(0,1+ D(G(E(o, p), m,p), m, p))]. @

Feature matching loss. Let D; and N; be the output fea-
ture maps and the number of elements of the i-the layer of
D respectively, Sp and Ep be the start number of layer for
loss calculation and total number layers in D respectively.
The feature matching loss is denoted as:

Lr=E Y [IDio.m.p)-
Z @

D;(G(&(o,p), m,p), m, p))|l1]-
To reduce the ambiguity, we only use high-level features
and set Sp to 3.

Perceptual loss. Let V; and M; be the output feature
maps and the number of elements of the ¢-the layer of VGG
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network respectively, Sy and Ey be the start number of
layer for loss calculation and total number layers in VGG
network respectively. The perceptual loss is denoted as:
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Similar to feature matching loss, we only use high-level fea-
tures and set Sp to 3.

KL-Divergence loss. Let qz(z|o,p) and ¢,(z|o,p) be
the variational distribution of IN, and N respectively. p(z)
be a standard Gaussian distribution. The KL-Divergence
loss is denoted as:

Lrr =0.5%(D(gs(zlo, p)p(2))+D(gy (2|0, P)||p(z)()i)~

The overall loss is made up of the above-mentioned loss
terms as:

?g(mgx(LGAN) +MLF+XLp +A3LKkL):  (5)

Following SPADE, We set A; = 10, Ay = 10, A3 = 0.05.

2. Details of Datasets
The details about each dataset are described as follows:

* Cityscapes dataset [1] is a widely used dataset for
semantic image synthesis [10, 7, 11]. The high-
resolution images with fine semantic and instance an-
notations are taken from street scenes of German cities.
There are 2,975 training images and 500 validation im-
ages. The number of annotated semantic classes is 35.

e ADE20K dataset [13] consists of 25,210 images
(20,210 for training, 2,000 for validation and 3,000 for
testing). The images in ADE20K dataset cover a wide
range of scenes and object categories, including a total
of 150 object and stuff classes.



e CelebAMask-HQ dataset [4, 3, 6] is based on Cele-
bAHQ face imgae dataset. It contains of 28,000 train-
ing images and 2,000 validation images with 19 differ-
ent semantic classes.

* DeepFashion dataset [5] contains 52,712 person im-
ages with fashion clothes. We use the processed
dataset provided by GroupDNet [ 4] which consists of
30,000 training images and 2,247 validation images.
There are 8 different semantic classes.

* DeepFashion2 dataset is built from DeepFashion. We
combine two adjacent images to generate the images
containing two persons. The new semantic mask and
the instance map are also derived from the correspond-
ing two semantic masks. This dataset is only used to
evaluate the performance of models trained on Deep-
Fashion dataset in terms of instance level diversity.

In these datasets, Cityscapes and DeepFashion2 have se-
mantic and instance annotations, while the rest have only se-
mantic annotations. In our experiment, the resolution of im-
ages is 256 x 256 except that Cityscapes dataset is 256 x512.

3. Details of Diversity Metrics

We adopt the LPIPS [12, 8] to evaluate the overall di-
versity of the results. Specifically, we generate 10 groups
of images or evaluation with randomly sampled noise, and
calculate the diversity score between 2 random groups at a
time. A total of 10 scores are calculated, and we measure
the mean of these scores to reduce the potential fluctuation
caused by random sampling.

To evaluate the instance-level diversity, we expand the
metrics proposed by [14], called mean Instance-Specific
Diversity (mISD) and mean Other-Instances Diversity
(mOID), which represent the degree of change inside and
outside the instance region when being manipulated. Spe-
cially, we generate several images by changing sampled
noise for specified instance while keeping the noise for oth-
ers unchanged. Then, the similarity inside and outside the
instance region between these images makes up the mISD
and mOID metrics. For datasets which have no instance an-
notations, these metrics degenerate to semantic level (mean
Class-Specific Diversity (mCSD) and mean Other-Classes
Diversity (mOCD)) which are the same with [14]. A high
diversity inside the instance area (high mISD), as well as a
low outside diversity (low mOID), are desired.

4. Additional ablation study

Here we give the additional ablation study for C° which
represents the length of the initial sampling. Intuitively,
the longer the sampling length is, the higher the diversity
of the synthesized image will be. We conduct experiments

on the Cityscapes and CelebAMask-HQ datasets, which in-
clude complex street scenes and delicate facial images. As
summarized in Table 1, we compare the default setting
(C° = 64) with two variant settings: a shorter sampling
length (C° = 8, INADE-8) and a longer sampling length
(C° = 128, INADE-128). We find that INADE-8 shows the
lower LPIPS score than INADE, while IANDE-128 corre-
spondingly gets the highest score in this metric. And the
model with the default setting (INADE) gets the best scores
in terms of quality metrics. In our understanding, a short
sampling length (e.g. 8) may limit the information capacity,
thus reducing the generation quality (low scores of mloU,
acc and FID) and diversity (low score of LPIPS). In con-
trast, a longer sampling length (e.g. 128) can increase the
diversity of the synthesized image (high score of LPIPS),
but also increases the difficulty of high-quality image gen-
eration (low scores of mloU, acc and FID).

In terms of model parameters, FLOPs and run time,
INADE-8 is best, but the advantage is not obvious com-
pared with INADE and INADE-128. Based on the above
results, we set C'° = 64 on different datasets by default.

5. Additional results

In Figure 4, we show more multi-modal qualitative re-
sults on different datasets that only change one specified
class or instance. The conclusions are basically the same
as we mention in the main submission. BicycleGAN, DSC-
GAN and VSPADE show the global style controllabitity,
GroupDNet expands it to semantic level, while the synthesis
results of our method can be controlled at both the seman-
tic level and instance level. We notice that in some results,
when we change one part, other parts slightly change as
well, which is also mentioned in GroupDNet [14]. In fact,
this is reasonable in some cases to increase the generation
fidelity. For example, as shown in Figure 4 (h), the lighting
often changes with the sky, if the appearance of the grass is
totally unchanged, the final generated image will look un-
natural to some extent. Therefore, though the metric mOCD
(or mOID) may be a good indication of semantic/instance-
level controllability, a slightly high mOCD or mOID do not
represent worse quality. In other words, we do not expect
them to be zero in real applications.

In Figure 5, Figure 6, Figure 7, Figure 8, we further
show additional qualitative comparison results between the
proposed INADE and other methods on the DeepFashion,
Cityscapes, ADE20K and CelebAMask-HQ datasets. These
results show that the images quality of INADE is better than
or at least comparable to existing methods.
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Table 1. Comparison of INADE with different C'° on the Cityscapes and CelebAMask-HQ daasets. P, F and T represent the generator

parameters, FLOPs and run time respectively.

Methods Cityscapes CelebAMask-HQ
mloU | acc FID | LPIPS | PM) | F(G) | T(s) | mloU | acc FID [ LPIPS | PM) | F(G) | T (s)
INADE-64 (default) | 61.02 | 93.16 | 38.04 | 0.248 | 77.39 | 75.26 | 0.0486 | 74.08 | 94.31 | 22.55 | 0.365 | 85.12 | 42.18 | 0.0298
INADE-8 60.25 | 93.07 | 38.68 | 0.220 | 76.78 | 75.23 | 0.0482 | 73.26 | 94.31 | 24.58 | 0.350 | 84.50 | 42.16 | 0.0295
INADE-128 59.57 | 92.68 | 39.30 | 0.315 | 78.10 | 75.28 | 0.0497 | 73.48 | 94.28 | 24.88 | 0.366 | 85.82 | 42.20 | 0.0306
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Figure 1. Architecture of our encoder network. We use UNet [9]
based network to extract the features with the same resolution of
input image, and then obtain the {@., b, @z, bs} through inde-
pendent instance partial convolution (InstConv) and instance aver-
age pooling (InstPool).
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Figure 2. Architecture of our generator network. It consists of a
linear transform layer, six INADE ResBIKs with upsampling and
a final classification convolution layer. The upsampling operation
on the second INADE ResBIK is removed if the resolution of gen-
erated images is 256 x 512. The initial noise (Nq,, Nﬁ) will be
translated through a linear transformation mapping before fed to
INADE ResBIKs.
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Figure 3. The discriminator of our method is based on the Patch-
GAN [2]. It takes the concatenation the segmentation map, in-
stance map and the image as input.
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Figure 4. Multi-modal comparison of our INADE with previous state-of-the-art methods on DeepFashion (a-b), DeepFashion2 (c-d),
CelebAMask-HQ (e-f), ADE20K (g-h) and Cityscapes (i) datasets.



o N SRR A 3
- S F \\m.' S
(= iﬂv : ﬁ:%@l&,ﬂﬁ.

a.? & Y G L_@!/ f;. g

@mﬂwg

: a?mm?ﬁ. = o Tt m.n.m*
ﬂTm,i ‘ﬂnﬂ«&p\aﬁ.d

Figure 5. Qualitative comparison of our INADE with previous state-of-the-art methods on the DeepFashion and DeepFashion2 datasets.
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Figure 6. Qualitative comparison of our INADE with previous state-of-the-art methods on the Cityscapes dataset.
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Figure 7. Qualitative comparison of our INADE with previous state-of-the-art methods on the ADE20K dataset.
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Figure 8. Qualitative comparison of our INADE with previous state-of-the-art methods on the CelebAMask-HQ dataset.



