
Supplementary Materials
SceneGen: Learning to Generate Realistic Traffic Scenes

Shuhan Tan1,2* Kelvin Wong1,3∗ Shenlong Wang1,3

Sivabalan Manivasagam1,3 Mengye Ren1,3 Raquel Urtasun1,3

1Uber Advanced Technologies Group 2Sun Yat-Sen University 3University of Toronto
tanshh@mail2.sysu.edu.cn {kelvinwong,slwang,manivasagam,mren,urtasun}@cs.toronto.edu

Abstract

In our supplementary materials, we detail SceneGen’s model architecture and training procedure (Sec. 1). Additionally,
we provide additional experiment details in Sec. 2 and additional experiment results in Sec. 3. In Sec. 4, we exhibit an
extensive array of qualitative results that demonstrate the realism and diversity of the traffic scenes generated by SceneGen.

1. Additional Model Details
1.1. Input Representation

At each step of the generation process, SceneGen takes a bird’s eye view multi-channel image encoding the HD map
m, the SDV a0, and the actors generated so far {a1, . . . ,ai−1} in the SDV’s egocentric coordinate system. The image
emcompasses an 80m × 80m region of interest centered on the SDV a0 and has a resolution of 0.25m per pixel, yielding
a 320 × 320 image. This implies that the SDV always faces right in the image. The HD map is rasterized into a multi-
channel image describing all available map elements in each dataset. For ATG4D, our multi-channel image consists of: lane
polygons (straight vehicle lanes, dedicated right vehicle lanes, dedicated left vehicle lanes, dedicated bus lanes, and dedicated
bike lanes); lane centerlines and dividers (allowed to cross, forbidden to cross, and maybe allowed to cross); lane segments
(straight vehicle lanes, dedicated right vehicle lanes, and dedicated left vehicle lanes); drivable area and road polygons; and
crosswalk polygons. In addition, we also encode each lane segment’s traffic light state (green, yellow, red, flashing yellow,
flashing red, and unknown), speed limit, and orientation as filled lane polygons. Note that orientation angles are encoded in
their Biternion representations θ = (cos θ, sin θ) [17]. In aggregate, this yields a 24-channel image.

Argoverse provides a more limited set of map elements. Here, our multi-channel image consists of: lane polygons; lane
centerlines (all lanes, left turn lanes, right turn lanes, intersection lanes, and traffic-controlled lanes); lane orientations (in
Biternion representation); and drivable area polygons. In aggregate, this yields a 9-channel image.

To encode the actors a0,a1, . . ., we rasterize their bounding boxes onto a collection of binary occupancy images [1],
one for each class; i.e., SDV, vehicles, pedestrians, and bicyclists. Furthermore, we encode their headings and velocities by
rasterizing their bounding boxes onto a five-channel image, filled with their respective speed, direction, and heading. As
before, direction and heading angles are encoded in their Biternion representations. See Fig. 1 for an example.

1.2. Model Architecture

The basis of our model is the ConvLSTM architecture [20]. Let x(i) ∈ RC×H×W denote the input multi-channel image
at the i-th step of the generation process. Given the previous hidden and cell states h(i−1) and c(i−1), the new hidden states
h(i), cell states c(i), and backbone features f (i) are given by:

h(i), c(i) = ConvLSTM(x(i),h(i−1), c(i−1);w) (1)

f (i) = CNNb(h(i);w) (2)

*Indicates equal contribution. Work done at Uber ATG.



Actor Occupancies

Lane Polygons

Drivable Areas + Roads Crosswalks

Lane SegmentsLane Centerline + 
Dividers

Traffic Light States

Lane Orientation + 
Speed Limits

Actor Heading + 
Velocity

Figure 1: The input multi-channel image to SceneGen for ATG4D.

Here, ConvLSTM is a two-layer ConvLSTM with 5 × 5 convolution kernels and 32 hidden channels, and CNNb is a
five-layer convolutional neural network (CNN) with 32 feature channels per layer. Each convolution layer consists of a 3× 3
convolution kernel, Group Normalization [24], and ReLU activations. The backbone features f (i) summarize the generated
scene so far and are given as input to the subsequent actor modules, which we detail next.

Class: We predict the class categorical distribution parameters πc ∈ ∆|C| as follows1:

πc = MLPc(avg-pool(f (i));w) (3)

where avg-pool : RC×H×W → RC is average pooling over the spatial dimensions and MLPc is a three-layer multi-layer
perceptron (MLP) with 32 feature channels per hidden layer, ReLU activations, and softmax outputs.

Location: We apply uniform quantization to each actor’s position and model the quantized values with a categorical distri-
bution. Our quantization resolution is 0.25m, which we found sufficient to generate realistic traffic scenes while balancing
memory efficiency. To predict the parameters πloc ∈ ∆H×W−1, we use a three-layer CNN with 32 feature channels per
hidden layer. Each hidden convolution layer consists of a 3 × 3 convolution kernel, Group Normalization [24], and ReLU
activations. The output convolution layer uses a 1 × 1 kernel with softmax activations. Note that we use separate CNN
weights for each class in C; i.e., vehicles, pedestrians, and bicyclists.

Bounding box: An actor’s bounding box bi ∈ B consists of its width and height (wi, li) ∈ R2
>0 and its heading θi ∈ [0, 2π).

We model the distribution over bounding box sizes with a mixture of K bivariate log-normal distributions whose parameters
are predicted by a three-layer MLP (with the same architecture as described earlier):

[πbox,µbox,Σbox] = MLPbox(f (i)
xi,yi ; ci,w) (4)

where πbox ∈ ∆K−1 are mixture weights and each µbox,k ∈ R2 and Σbox,k ∈ S2+ parameterize a component log-normal
distribution. To enforce the constraint that each Σ ∈ S2+, MLPbox predicts a variance term σ2 ∈ R2

>0 (in log-scale) and a

1We use ∆n = {(x0, x1, . . . , xn) ∈ Rn+1|
∑

i xi = 1 and xi ≥ 0 for all i} to denote the n-simplex.



correlation term ρ ∈ [−1, 1] (using tanh) such that:

Σ =

[
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]
∈ S2+ (5)

Similarly, we model the distribution over heading angles with a mixture of K Von-Mises distributions whose parameters
are predicted by another three-layer MLP:

[πθ, µθ, κθ] = MLPθ(f
(i)
xi,yi ; ci,w) (6)

where πθ ∈ ∆K−1 are mixture weights and each µθ,k ∈ [0, 2π) and κθ,k > 0 parameterize a component Von-Mises
distribution. Following Prokudin et al. [17], we parameterize each µ with its Biternion representation µ = (cosµ, sinµ) and
each κ is predicted in log-scale. Note that we use separate MLP weights for each class in C whose actors are represented by
bounding boxes; i.e., vehicles and bicyclists. Pedestrians are represented by their center of gravity only (i.e., location).

Velocity: Each of MLPv, MLPs, and MLPω is a three-layer MLP with the same architecture as described above. We
parameterize the mixture of K Von-Mises distributions for directions ω just as we parameterize the distribution of headings.
As before, we use separate MLP weights for each class in C.

1.3. Training Details

We train our model to maximize the log-likelihood of real traffic scenes in our training dataset:

w? = arg max
w

N∑
i=1

log p(ai,1, . . . ,ai,n|mi,ai,0;w) (7)

where w are the neural network parameters and N is the number of samples in our training set. We use teacher forcing and
backpropagation-through-time to train through the generation process, up to a fixed window as memory allows. On a Nvidia
Quadro RTX 5000 with 16GB of GPU memory, we train through 25 generation steps with batch size of 1 per GPU. We use
PyTorch [15] and Horovod [19] to distribute the training process over 16 GPUs with a total batch size of 16. During training,
we also randomly rotate each traffic scene with θ ∈ [0, 2π).

Note that each summand log p(a1, . . . ,an|m;w) can be decomposed into a sum of the log-likelihoods for each actors;
namely, we have

log p(ai|ξi) = log p(ci|ξi)︸ ︷︷ ︸
class

+ log p(xi, yi|ci, ξi)︸ ︷︷ ︸
location

+ log p(bi|ci, xi, yi, ξi)︸ ︷︷ ︸
bounding box

+ log p(vi|ci, xi, yi, bi, ξi)︸ ︷︷ ︸
velocity

(8)

where ξi encapsulates the conditions on a<i, m, and a0, to simplify notation. Therefore, the first summand log p(ci|ξi) is
the (negative) cross-entropy loss between the predicted parameters πc and the ground truth class ci ∈ C∪ {⊥}. We describe
the remaining summands in detail next.

Location: The second summand log p(xi, yi|ci, ξi) measures the log-likelihood the actor’s location (xi, yi) ∈ R2. As
discussed earlier, we uniformly quantize each actor’s location and parameterize it with a categorical distribution. Therefore,
log p(xi, yi|ci, ξi) is the (negative) cross-entropy loss between the predicted parameters πloc and the actor’s ground truth
quantized location. To address the significant imbalance of positive versus negative locations here, we use online negative
hard mining. Specifically, we normalize πloc over the hardest 10,000 locations only (including the positive location), and
compute log p(xi, yi|ci, ξi) based this restricted categorical distribution instead.

Bounding box: The third summand log p(bi|ci, xi, yi, ξi) is a sum of the log-likelihoods of the actor’s bounding box size
(wi, li) ∈ R2 and heading θi ∈ [0, 2π):

log p(bi|ci, xi, yi, ξi) = log p(wi, li|ci, xi, yi, ξi) + log p(θi|ci, xi, yi, ξi) (9)



Since we model bounding box size with a mixture of K bivariate log-normal distributions, we have

log p(wi, li|ci, xi, yi, ξi) = log

K∑
k=1

πk
1

2πσk,1σk,2
√

1− ρ2k
e
− 1

2(1−ρ2
k
)

[(
logwi−µk,1

σk,1

)2
+
(

log li−µk,2
σk,2

)2
+2ρk

(
logwi−µk,1

σk,1

)(
log li−µk,2

σk,2

)]

(10)

where π ∈ ∆K−1 are mixture weights and each µk ∈ R2, σk ∈ R2
>0, and ρk ∈ [−1, 1] parameterize a component bivariate

log-normal distribution.
Similarly, since we model heading angles with a mixture of K Von-Mises distributions, we have

log p(θi|ci, xi, yi, ξi) = log

K∑
k=1

πk
eκk cos(θi−µk)

2πI0(κk)
(11)

where π ∈ ∆K−1 are mixture weights and each µk ∈ [0, 2π) and κk > 0 parameterize a component Von-Mises distribution.

Velocity: The fourth summand log p(vi|ci, xi, yi, bi, ξi) is the log-likelihood of the actor’s velocity vi ∈ R2, which we
parameterize as vi = (si cosωi, si sinωi) where si ∈ R≥0 is its speed and ωi ∈ [0, 2π) is its direction. Recall that we model
the distribution over an actor’s velocity as a mixture model where one of the K ≥ 2 components corresponds to vi = 0.
Therefore, for vi = 0, we have

log p(vi|ci, xi, yi, bi, ξi) = log π1 (12)

and for vi > 0, we have

log p(vi|ci, xi, yi, bi, ξi) = log

K∑
k=2

πk
1

σs,k
√

2π
e
− 1

2

(
log si−µs,k

σs,k

)2

︸ ︷︷ ︸
speed

× eκω,k cos(ωi−µω,k)

2πI0(κω,k)︸ ︷︷ ︸
direction

(13)

where π ∈ ∆K−1 are mixture weights, each µs,k ∈ R and σs,k > 0 parameterize a component log-normal distribution for
speed si, and each µω,k ∈ [0, 2π) and κω,k > 0 parameterize a component Von-Mises distribution for direction ωi.

2. Additional Experiment Details
2.1. Baselines

Prob. Grammar: Our Prob. Grammar baseline is inspired by recent work on probabilistic scene grammars [16, 9, 3].
Here, traffic scenes are composed by placing actors onto lane segments in the HD map, and initializing their classes, sizes,
headings, velocities according to a hand-crafted prior. In our experiments, we use the following scene grammar:

〈Scene〉 → 〈Lanes〉 (14)
〈Lanes〉 → 〈Lane〉〈Lanes〉|ε (15)
〈Lane〉 → 〈Actors〉 (16)
〈Actors〉 → 〈Actor〉〈Actors〉|ε (17)

where Actor and ε are terminal symbols. Sampling from this scene grammar yields a scene graph, which defines the scene
structure—where lane segments are and which actors are positioned on top of them—and scene parameters—the attributes
of each lane segment and actor. In our setting, we are given the lane nodes (and the SDV actor’s node) of the scene graph as
a condition, and our goal is to insert/modify the actor nodes.

Drawing inspiration from MetaSim’s probabilistic scene grammar [9], we first uniformly sample the maximum number
of actors per lane segment and then place them along the lane centerline, with a random clearance between successive actors
drawn from the exponential distribution. The class of each actor is determined by the lane segment under consideration (i.e.,
car lane vs. bike lane); its lateral offset from the lane centerline is given by uniform noise; its bounding box size is sampled
from a uniform distribution; its heading and the direction of its velocity is given by the direction of the lane segment plus
some uniform noise; and its speed is the minimum of a sample from a uniform distribution and the lane segment’s speed
limit. The parameters of every distribution are tuned by hand.



ATG4D Argoverse

Method Size Speed Head Size Speed Head

Prob. Grammar 0.49 0.42 0.30 0.41 0.57 0.38
MetaSim 0.49 0.33 0.14 0.50 0.53 0.18
Procedural 0.15 0.41 0.07 0.23 0.59 0.17
Lane Graph 0.33 0.28 0.16 0.31 0.34 0.38
LayoutVAE 0.16 0.40 0.29 0.21 0.46 0.29

SceneGen 0.06 0.19 0.08 0.15 0.20 0.22

Table 1: Vehicle-only maximum mean discrepency (MMD) results on ATG4D and Argoverse.

MetaSim: Our next baseline (MetaSim) uses a graph neural network (GNN) to transform the attributes of each actor
node in the given scene graph. We use the implementation of Kar et al. [9] for this purpose. Specifically, given a scene
graph drawn from Prob. Grammar, MetaSim deterministically modifies each actor’s distance along its lane centerline, lateral
offset, bounding box size, heading, and velocity. The inputs to MetaSim is a scene graph where each node’s features are
its attributes (normalized between 0 and 1 based on their respective minimum/maximum values under the prior), and the
outputs of MetaSim are each node’s new attributes (again normalized between 0 and 1). We use the GNN architecture of
Kar et al. [9]: a three-layer GNN encoder with 32 → 64 → 128 features channels and a three-layer GNN decoder with
128→ 64→ 32 feature channels. Additionally, we use linear layers to encode and decode the per-node attributes.

Note that we train MetaSim using a supervised algorithm with heuristically generated ground truth scene graphs. In
particular, given a real traffic scene, we first associate each actor to a lane segment; if this is not possible, the actor is not
included in the scene graph. Next, we modify the attributes of each actor according to Prob. Grammar’s prior. Finally, this
modified scene graph is given as input to MetaSim, and we train MetaSim to transform the modified attributes back to their
original ones. In our setting, this training process was both faster and more stable than the original unsupervised algorithm.

Procedural: Our Procedural baseline is inspired by methods that operate directly on the road topology of the traffic
scene [22, 21, 7, 14]. Specifically, given a lane graph of the scene [11], Procedural uses a set of rules to place actors
onto lane centerlines. First, we determine a set of valid routes traversing the entire lane graph. Each valid route is a sequence
of successive lane centerlines along which actors can traverse without violating traffic rules; e.g., running red lights, merging
onto an oncoming lane, etc. Next, we place actors onto each route such that successive actors maintain a random clearance
(drawn from an exponential distribution) and no two actors collide. Each actor’s bounding box size is sampled form a Gaus-
sian KDE fitted to the training dataset, and its heading is determined by the tangent vector along its lane centerline at its
location. Finally, we initialize the speed of each actor such that successive actors maintain a random time gap (drawn from
an exponential distribution). Procedural is similar to the heuristics underlying [22, 21, 7] but generalized to handle arbitrary
road topologies. Similar to Prob. Grammar, Procedural can generate only vehicles and bicyclists since existing HD maps do
not provide sidewalks. We believe this limitation highlights the difficulty of using a heuristics-based approach.

Lane Graph: Inspired by MetaSim, we also consider a learning-based version of Procedural. Specifically, given a traffic
scene generated by Procedural, we use a lane graph neural network to transform the attributes of each actor; i.e., location,
bounding box size, heading, and velocity. Our lane graph neural network follows the design of the state-of-the-art motion
forecasting model by Liang et al. [11]. It consists of MapNet for extracting map topology features and four fusion modules:
actor-to-lane, lane-to-lane, lane-to-actor, and actor-to-actor. We train Lane Graph using heuristically generated ground truth,
as in our MetaSim baseline.

LayoutVAE: Our implementation of LayoutVAE largely follows that of Jyothi et al. [8]. To adapt LayoutVAE to traffic
scene generation, we first augment the original model with an additional CNN to extract map features. In particular, given a
bird’s eye view multi-channel image of the HD map, we use the backbone architecture of Liang et al. [12] to extract multi-
scale map features, which we subsequently average-pool into a feature vector. This is then given to LayoutVAE as input in
place of the label set encoding used in the original setting2. Our second modification enables LayoutVAE to output oriented

2The label set in our setting is fixed to be vehicles, pedestrians, and bicyclists.



M = 1 M = 10 M = 20

Figure 2: Traffic scenes generated by SceneGen using M = 1, 10, 20 sample proposals for ATG4D.

bounding boxes and velocities. Specifically, we replace the spherical quadrivariate Gaussian distribution of its BBoxVAE
with a bivariate Gaussian distribution for location, a bivariate log-normal distribution for bounding box size, and a bivariate
Gaussian distribution for velocity. To evaluate the log-likelihood of a scene, we use Monte-Carlo approximation with 1000
samples from the conditional prior [8].

2.2. MMD Metrics

To complement our likelihood-based metric, we compute a sample-based metric as well: maximum mean discrepancy
(MMD) [4]. As we discussed in the main text, MMD measures a distance between two distributions p and q as

MMD2(p, q) = Ex,x′∼p[k(x, x′)] + Ey,y′∼q[k(y, y′)]− 2Ex∼p,y∼q[k(x, y)] (18)

for some kernel k. Following [26, 13], we compute MMD using Gaussian kernels (with bandwidth σ = 1) with the total
variation distance to compare scene statistics between generated and real traffic scenes. In particular, we first sample a set P
of real traffic scenes from the evaluation dataset. Conditioned the SDV state and HD map of the scenes in P , we generate a
set Q of synthetic scenes using the method under evaluation. Then, we approximate MMD as:

MMD2(p, q) ≈ 1

|P |2
∑
x∈P

∑
x′∈P

k(x, x′) +
1

|Q|2
∑
y∈Q

∑
y′∈Q

k(y, y′)− 2

|P ||Q|
∑
x∈P

∑
y∈Q

k(x, y) (19)

Our scene statistics measure the distribution of locations, classes, bounding box sizes (in m2), speeds (in m/s), and
heading angles (relative to that of the SDV) for each scene. Each distribution of location is a histogram of bird’s eye view
locations over an 80m× 80m grid at a 5m resolution. Empty scenes are discarded since these scene statistics are undefined.
Since MMD is expensive to compute, in ATG4D, we form P by sampling the evaluation dataset by every 25th scene, yielding
approximately 5000 scenes. We compute MMD over the full Argoverse validation set as it contains 5015 scenes only.

We also compute MMD in the feature space of a pre-trained motion forecasting model. This is similar to some popular
metrics for evaluating generative models such IS [18], FID [5], and KID [2], except we use a motion forecasting model as our
feature extractor. Here, our motion forecasting model takes a bird’s eye view multi-channel image of the actors in the scene
and regresses the future locations of each actor over the next 3 seconds in 0.5s increments. We use the actor rasterization
procedure described in Sec. 1.1 and the model architecture from [23], and we train the model using 4000 training log from
the ATG4D training set. To obtain a feature vector summarizing the scene, we average pool the model’s backbone features
along its spatial dimensions. Then, to compute MMD, we use the RBF kernel with bandwidth σ = 1.



M Feat. Class Size Speed Head

1 0.13 0.05 0.05 0.10 0.10
10 0.11 0.20 0.06 0.33 0.08
20 0.11 0.30 0.07 0.41 0.08

Table 2: Analysis of the number of sample proposals M on ATG4D. The reported numbers are the MMD metrics computed
between distributions of features extracted by a motion forecasting model and various scene statistics (see main text).

Vehicle Pedestrian Bicyclist
Training Dataset 0.5 0.7 0.3 0.5 0.3 0.5

Real 250K 95.3 90.4 77.3 72.0 69.3 62.8
+ Sim 250K 95.7 90.7 78.2 72.9 70.4 64.3
+ Sim 500K 95.6 90.8 78.0 72.6 68.6 61.7
+ Sim 750K 95.6 90.6 77.5 72.2 67.7 59.1
+ Sim 1000K 95.6 90.6 77.3 72.0 66.4 58.6
+ Sim 1250K 95.4 90.4 76.9 71.6 65.4 57.2

Table 3: Data augmentation results on ATG4D. Starting from 250,000 real training LiDAR frames, we progressively add
250,000 SceneGen-simulated LiDAR frames to the training dataset. We evaluate detection AP at 0.5/0.7IoU for vehicles and
0.3/0.5IoU for pedestrians and bicyclists.

3. Additional Experiment Results
3.1. Vehicle MMD Metrics

In Tab. 1, we report vehicle-only MMD metrics for ATG4D and Argoverse. Specifically, we compute scene statistics for
generated and real traffic scenes using vehicle actors only. As before, scenes with no vehicles are discarded during evaluation.
This allows for an alternative comparison that controls for the class most easily handled by heuristics; i.e., vehicles. Overall,
we see that SceneGen still achieves the best results among the competing methods. This result reaffirms our claim that
heuristics-based methods are insufficient to model the full complexity and diversity of real world traffic scenes.

3.2. Sampling Strategy Analysis

As discussed in the main text, SceneGen uses a sampling strategy inspired by nucleus sampling [6]. Specifically, at
each generation step, we sample each of SceneGen’s position, heading, and velocity distributions M times and return the
most likely sample as output. In Tab. 2 and Fig. 2, we analyze the effects of using different numbers of sample proposals
M = 1, 10, 20. We see that using M > 1 decreases MMD on deep features, indicating that scene-level realism is improved.
This improvement is even more evident in Fig. 2, where we see vehicles disregarding the rules of traffic when M = 1. With
more fine-grained tuning of M , we expect to see improvements in the actor-level statistics as well; i.e., class, size, and speed.

3.3. Sim2Real Data Augmentation

In Sec. 4.4 of the main text, we demonstrated that SceneGen coupled with sensor simulation can generate realistic labeled
data for training perception models. Our next experiment studies whether this simulated data can be used to improve the
performance of the perception models via data augmentation. To this end, we train several 3D object detectors [25] with
varying amounts of simulated LiDAR frames added to their training datasets: starting from 250,000 real LiDAR frames, we
progressively add 250,000 simulated LiDAR frames. Note that each set of 250,000 LiDAR frames have the same underlying
SDV state and HD map. Each detector is trained from scratch until convergence using the Adam optimizer [10] with a
learning rate of 1e−4 with a batch size of 32, distributed over 4 GPUs.

From Tab. 3, we see that adding 250,000 SceneGen simulated LiDAR frames yields iprovements of 0.4% in AP@0.5IoU
for vehicles, 0.9% in AP@0.3IoU for pedestrians, and 1.1% in AP@0.3IoU for bicyclists. Additional augmentation gave no
further gains, which we hypothesize is due to a Sim2Real gap in sensor simulation and performance saturation.



4. Additional Qualitative Results
In Fig. 3 and 4, we present an array of additional qualitative results for ATG4D and Argoverse respectively. Here, we

compare traffic scenes generated by SceneGen, MetaSim, Lane Graph, and LayoutVAE. From these visualizations, we see
that SceneGen generates traffic scenes that best reflect the complexity and diversity of real world traffic scenes. For example,
in the second-to-last row of Fig. 3, we show a traffic scene generated by SceneGen in which a vehicle performs a three-point
turn. In the bottom row of Fig. 3, we also show a scene in which two bicyclists perform an left turn using the car lane. These
scenes highlight SceneGen’s ability to model rare but plausible traffic scenes that could occur in the real world.

In Fig. 5 and 6, we also showcase the diversity of traffic scenes that SceneGen is able to generate. Each row in the figures
show four samples from our model when given the same SDV state and HD map as inputs. From these visualizations, we
see that SceneGen captures the multi-modality of real world traffic scenes well. For example, the top row of Fig. 5 shows
four traffic scenes generated for a four-way intersection. Here, we see samples in which pedestrians cross the intersection,
vehicles perform an unprotected left turn, and a large bus goes straight.

Finally, in Fig. 7, we visualize the quantized location heatmaps for steps t = 0, 5, 10, 15, 20 of the generation process.
Each row shows the categorical distribution from which we sample the next actor’s location. From these visualizations, we see
that SceneGen is able to model the distribution over actor locations (and the corresponding uncertainties) quite precisely. For
example, the distribution over vehicle locations are concentrated around lane centerlines and the distribution over pedestrian
locations are diffused over crosswalks and sidewalks.



SceneGen MetaSim Lane Graph LayoutVAE

Figure 3: Qualitative comparison of traffic scenes generated by SceneGen and various baselines on ATG4D. The ego SDV
is shown in red; vehicles in blue; pedestrians in orange; and bicyclists in green. We visualize lane segments and drivable
surfaces in light grey and crosswalks in dark grey.



SceneGen MetaSim Lane Graph LayoutVAE

Figure 4: Qualitative comparison of traffic scenes generated by SceneGen and various baselines on Argoverse. The ego SDV
is shown in red; vehicles in blue; pedestrians in orange; and bicyclists in green. We visualize lane segments in light grey.



Sample 1 Sample 2 Sample 3 Sample 4

Figure 5: Traffic scenes generated by SceneGen on ATG4D. The traffic scenes in each row are generated from the same SDV
state and HD map inputs. Each traffic scene is a distinct sample drawn from our model.

Sample 1 Sample 2 Sample 3 Sample 4

Figure 6: Traffic scenes generated by SceneGen on Argoverse. The traffic scenes in each row are generated from the same
SDV state and HD map inputs. Each traffic scene is a distinct sample drawn from our model.



G
en

er
at

ed
 T

ra
ff

ic
 S

ce
ne

St
ep

 0
St

ep
 5

St
ep

 1
0

St
ep

 1
5

St
ep

 2
0

Figure 7: Traffic scenes generated by SceneGen on ATG4D (first two columns) and Argoverse (last two columns). We
visualize the quantized location heatmap for steps t = 0, 5, 10, 15, 20 of the generation process. Each column represents the
generation process for one traffic scene. Bright yellow means higher likelihood.



References
[1] Mayank Bansal, Alex Krizhevsky, and Abhijit S. Ogale. Chauffeurnet: Learning to drive by imitating the best and synthesizing the

worst. In RSS, 2019.
[2] Mikolaj Binkowski, Dougal J. Sutherland, Michael Arbel, and Arthur Gretton. Demystifying MMD gans. In ICLR, 2018.
[3] Jeevan Devaranjan, Amlan Kar, and Sanja Fidler. Meta-sim2: Unsupervised learning of scene structure for synthetic data generation.

2020.
[4] Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, and Alexander J. Smola. A kernel two-sample test.

JMLR, 2012.
[5] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans trained by a two time-scale

update rule converge to a local nash equilibrium. In NeurIPS, 2017.
[6] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text degeneration. In ICLR, 2020.
[7] Stefan Jesenski, Jan Erik Stellet, Florian A. Schiegg, and J. Marius Zöllner. Generation of scenes in intersections for the validation

of highly automated driving functions. In IV, 2019.
[8] Akash Abdu Jyothi, Thibaut Durand, Jiawei He, Leonid Sigal, and Greg Mori. Layoutvae: Stochastic scene layout generation from

a label set. In ICCV, 2019.
[9] Amlan Kar, Aayush Prakash, Ming-Yu Liu, Eric Cameracci, Justin Yuan, Matt Rusiniak, David Acuna, Antonio Torralba, and Sanja

Fidler. Meta-sim: Learning to generate synthetic datasets. In ICCV, 2019.
[10] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.
[11] Ming Liang, Bin Yang, Rui Hu, Yun Chen, Renjie Liao, Song Feng, and Raquel Urtasun. Learning lane graph representations for

motion forecasting. In ECCV, 2020.
[12] Ming Liang, Bin Yang, Wenyuan Zeng, Yun Chen, Rui Hu, Sergio Casas, and Raquel Urtasun. Pnpnet: End-to-end perception and

prediction with tracking in the loop. In CVPR, 2020.
[13] Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, William L. Hamilton, David Duvenaud, Raquel Urtasun, and Richard S. Zemel.

Efficient graph generation with graph recurrent attention networks. In NeurIPS, 2019.
[14] Sivabalan Manivasagam, Shenlong Wang, Kelvin Wong, Wenyuan Zeng, Mikita Sazanovich, Shuhan Tan, Bin Yang, Wei-Chiu Ma,

and Raquel Urtasun. Lidarsim: Realistic lidar simulation by leveraging the real world. In CVPR, 2020.
[15] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia

Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank
Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In NeurIPS, 2019.

[16] Aayush Prakash, Shaad Boochoon, Mark Brophy, David Acuna, Eric Cameracci, Gavriel State, Omer Shapira, and Stan Birchfield.
Structured domain randomization: Bridging the reality gap by context-aware synthetic data. In ICRA, 2019.

[17] Sergey Prokudin, Peter V. Gehler, and Sebastian Nowozin. Deep directional statistics: Pose estimation with uncertainty quantification.
In ECCV, 2018.

[18] Tim Salimans, Ian J. Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. Improved techniques for training
gans. In NeurIPS, 2016.

[19] Alexander Sergeev and Mike Del Balso. Horovod: fast and easy distributed deep learning in tensorflow. arXiv, 2018.
[20] Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and Wang-chun Woo. Convolutional LSTM network: A

machine learning approach for precipitation nowcasting. In NeurIPS, 2015.
[21] Tim Allan Wheeler and Mykel J. Kochenderfer. Factor graph scene distributions for automotive safety analysis. In ITSC, 2016.
[22] Tim Allan Wheeler, Mykel J. Kochenderfer, and Philipp Robbel. Initial scene configurations for highway traffic propagation. In

ITSC, 2015.
[23] Kelvin Wong, Qiang Zhang, Ming Liang, Bin Yang, Renjie Liao, Abbas Sadat, and Raquel Urtasun. Testing the safety of self-driving

vehicles by simulating perception and prediction. ECCV, 2020.
[24] Yuxin Wu and Kaiming He. Group normalization. In ECCV, 2018.
[25] Bin Yang, Ming Liang, and Raquel Urtasun. HDNET: exploiting HD maps for 3d object detection. In CoRL, 2018.
[26] Jiaxuan You, Rex Ying, Xiang Ren, William L. Hamilton, and Jure Leskovec. Graphrnn: Generating realistic graphs with deep

auto-regressive models. In ICML, 2018.


