
Learned Initializations for Optimizing Coordinate-Based Neural
Representations: Supplemental Material

1. Implementation details

We found that modifying the weight initialization for
these coordinate-based networks drastically changed their
convergence behavior during test-time optimization. As a
result, we tuned the optimization method and hyperparam-
eters for each part of each experiment (using held-out val-
idation sets) in order to provide the fairest possible com-
parison and to not bias the results against the non-meta-
learned initializations. For example, we often found that
SGD outperformed Adam when doing test-time optimiza-
tion using meta-learned initializations, but that Adam was
significantly better than SGD with a standard random ini-
tialization.

All experiments are implemented in JAX [1]. Each ex-
periment is trained on either a single NVIDIA V100, 2080
Ti, or 3080 Ti. In all cases where the Adam optimizer [5] is
used, we keep the standard parameter choices for β1 = 0.9,
β2 = 0.999, ε = 10−8.

1.1. Image regression

For this task we use a SIREN [8] architecture (ω0 = 200)
with 5 layers of 256 channels each. For the randomly ini-
tialized Standard baseline, we use the specific initialization
procedure as proposed in the SIREN paper.

MAML [3] is trained for 150K iterations. Each iteration
has an outer batch size of 3 target images. The inner batch
contains all pixels of the target image. The outer loop uses
the Adam optimizer with learning rate of 10−5. The inner
loop performs two steps of gradient descent with a learning
rate of 10−2.

We additionally meta-learn another initialization using
Reptile [7]. We use the same learning rates as in MAML
but with an outer batch size of 10 target images. We report
the Reptile reconstruction accuracy in Table 1. We note that
Reptile also outperforms the non-meta-learned weights.

During test-time optimization, we use gradient descent
with learning rate of 10−2 when starting from the MAML
initial weights. For the baseline methods (Standard, Mean,
Matched, Shuffled) we used Adam with learning rate of
10−4, which performed significantly better than than gra-
dient descent.

Init. Method 2 Step PSNR ↑ # of iters to match ↓
Standard 10.88 37.92± 6.31
Mean 14.48 25.59± 4.57
Matched 13.73 26.32± 4.17
Shuffled 16.29 25.80± 4.02
Reptile 25.55 9.86± 7.42
MAML 30.37 -

Table 1. Image reconstruction results with meta-learning results
for both MAML and Reptile. MAML performs best, but Reptile
also outperforms the non-meta-learned weights.

1.2. CT reconstruction

For this task we use an MLP with 5 layers of 256 chan-
nels each. The network uses a ReLU activation after each
layer with the exception of the last layer, which has a sig-
moid activation. Prior to inputting the coordinates into the
network, we encode them using random Fourier features
sampled from a normal distribution with σ = 30, as was
done in Tancik et al. [9].

Reptile [7] is trained for 100K iterations. Each iteration
has an outer batch size of 1. The inner batch contains 20
CT projections, each with 256 measurements, taken from a
randomly sampled direction. The outer loop uses the Adam
optimizer with learning rate of 5×10−5. The inner loop per-
forms 12 inner loop steps of gradient descent with a learning
rate of 101.

We perform test-time optimization experiments with dif-
ferent numbers of supervision views to compare reconstruc-
tion quality. We found that the models are more prone to
overfitting when fewer views are provided. We tune the
learning rate and number of gradient steps for each initial-
ization method according to a held-out set of 16 validation
images. We report all of the test-time optimization hyper-
parameters in Table 2.

1.3. ShapeNet [2] view synthesis

We use a simplified NeRF [6] model for our view syn-
thesis tasks. This model uses a single network rather than
two networks (coarse and fine), and we do not provide view
directions as input. The network is an MLP with 6 lay-



ers, each with 256 channels and ReLU activations. As in
NeRF [6], we apply a positional encoding to each input co-
ordinate with the form

N⋃
i=0

{
cos
(
2fi/Nx

)
, sin

(
2fi/Nx

)}
, (1)

with N = 20 encodings and log-max frequency f = 8. We
accumulate 128 samples per ray for rendering.

Reptile is trained for 100K iterations with an outer batch
size of 1. The inner loop step optimizes over a batch of 128
rays. We perform 32 inner loop steps for every outer loop
step. The outer loop uses the Adam optimizer with learning
rate 5 × 10−4 for the Chairs scenes and 5 × 10−5 for the
Lamps and Cars scenes.

The test-time optimization parameters vary depending
on the scene and the number of views available during
meta-learning. Each experiment uses an inner batch of 64
rays. The Shuffled and Matched initializations are computed
based on the MV Meta weights. For the 25 view chair recon-
struction, we use stochastic gradient descent with a learning
rate of 10−1 for the Reptile initialization; for the standard
initialization, we use Adam with a learning rate of 10−4.
The test-time hyper parameters for the single view experi-
ments are listed in Table 3.

1.4. Phototourism [4] view synthesis

We use the same architecture as described in §1.3. Rep-
tile is trained for 150K iterations with an outer batch size
of 1. The inner loop step optimizes over a batch of 64 rays,
with 128 volume rendering samples per ray. The outer loop
uses the Adam optimizer with a learning rate of 5−4. We
train with 64 inner loop steps using gradient descent with a
learning rate of 10. We compare to Basic NeRF which has
the same setup, but only one inner step. For Basic NeRF we
train Trevi for 60K iterations, Brandenburg for 100K itera-
tions, and Sacre Coeur for 200K iterations. To transfer the
appearance of a new photo during test-time optimization,
we take 150 gradient steps with a learning rate of 10.

2. Weight space interpolation
We find that linearly interpolating between networks

in weight space produces meaningful outputs when using
meta-learned weights. Figure 1 shows interpolation be-
tween networks trained to represent images, and Figure 2
shows interpolations between networks that are trained to
reconstruct a Phototourism landmark.

3. Acknowledgements
MT is funded by an NSF fellowship and a Berkeley

DeepDrive grant. BM is funded by Google through the
BAIR Commons Program. Google University Relations

provided a generous donation of GCP compute credits. We
thank Ruichao Ren from NVIDIA for donating GPU hard-
ware.

References
[1] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James

Johnson, Chris Leary, Dougal Maclaurin, and Skye
Wanderman-Milne. JAX: composable transformations of
Python+NumPy programs, 2018.

[2] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat
Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Mano-
lis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and
Fisher Yu. Shapenet: An information-rich 3d model reposi-
tory. Technical report, 2015.

[3] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-
agnostic meta-learning for fast adaptation of deep networks.
ICML, 2017.

[4] Yuhe Jin, Dmytro Mishkin, Anastasiia Mishchuk, Jiri Matas,
Pascal Fua, Kwang Moo Yi, and Eduard Trulls. Image match-
ing across wide baselines: From paper to practice. Interna-
tional Journal of Computer Vision, pages 1–31, 2020.

[5] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. ICLR, 2015.

[6] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:
Representing scenes as neural radiance fields for view synthe-
sis. ECCV, 2020.

[7] Alex Nichol, Joshua Achiam, and John Schulman. On
first-order meta-learning algorithms. arXiv preprint
arXiv:1803.02999, 2018.

[8] Vincent Sitzmann, Julien N.P. Martel, Alexander W. Bergman,
David B. Lindell, and Gordon Wetzstein. Implicit neural
representations with periodic activation functions. NeurIPS,
2020.

[9] Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara
Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-
mamoorthi, Jonathan T. Barron, and Ren Ng. Fourier fea-
tures let networks learn high frequency functions in low di-
mensional domains. NeurIPS, 2020.



Opt. method Number of steps
Adam LR 1 View 2 Views 4 Views 8 Views

Standard 3 5× 10−4 50 100 250 1000
Mean 3 10−5 25 50 100 1000
Matched 3 5× 10−4 50 100 500 1000
Shuffled 3 5× 10−4 50 100 250 1000
Meta 7 101 50 100 1000 1000

Table 2. Hyper-parameters for CT test-time optimization. Each value is tuned on a held-out validation set.

Chairs Cars Lamps
Adam LR Steps Adam LR Steps Adam LR Steps

Standard 3 10−5 1000 3 5× 10−5 2000 3 5× 10−5 2000
Matched 3 10−4 2000 3 5× 10−5 2000 3 5× 10−5 2000
Shuffled 3 10−4 2000 3 5× 10−5 2000 3 5× 10−5 2000
MV Meta 7 10−1 1000 7 5× 10−1 2000 7 5× 10−1 2000
SV Meta 7 5× 10−1 1000 7 5× 10−1 2000 7 5× 10−1 2000

Table 3. Hyper-parameters for ShapeNet test-time optimization from a single view. Each value is tuned on a held-out validation set.

St
an

da
rd

M
et

a

Figure 1. Weight space interpolation for networks optimized to represent 2D images. We use test-time optimization to fit network weights
for three different images (denoted with arrows), then linearly interpolate between those weight values and visualize the resulting outputs.
When test-time optimization begins from a standard random initialization (Standard, top), weight space interpolation produces displeasing
artifacts, but when it begins from a meta-learned initialization (Meta, bottom) the resulting outputs maintain an image-like appearance.



Figure 2. Appearance interpolation on the Trevi Fountain scene from the Phototourism dataset [4]. We render the scene from a single fixed
camera pose. Each corner of the grid represents a NeRF network that has been test-time optimized to match the appearance of a single
image (starting from the meta-learned initial weights θ∗0 ). We linearly interpolate between these networks in weight space to render the
grid of images shown here. The image in the center is produced by directly rendering the meta-learned initial weights (with no test-time
optimziation), representing an “average” appearance for the scene. Please see the supplemental video for an animated version of this figure
with a moving camera path.


