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1. Weight of Unsupervised Loss

This section studies how tuning the weight of the un-
supervised loss changes the model performance and doc-
uments our decision for some low-level details. Here we
focus on the most important hyper-parameter defined in our
model: the weight β of the unsupervised loss LU .

All the experiments in this section are conducted on MS-
COCO train with 10% labeled. We use the label-unlabeled
data split 1 generated by code with the given random seed
from [5]. We use Faster R-CNN [4] with FPN [3] and
ResNet-50 [2] as our base model. It is worth noting that
in this experiment, the number of region proposals used in
the second stage of detection is 512, instead of 640 in the
main paper and in Sec. 2.

The final lossL of our model is the sum of the supervised
loss LS and the unsupervised loss LU with a scaling factor
β nU

nS
, as shown in Eqn. 1. nU , nS are the numbers of unla-

beled and labeled images, and β is an additional weight on
unsupervised loss. We use β nU

nS
to balance the unsupervised

loss and the supervised loss in the model training.

L = LS + β
nU
nS

LU (1)

Tab. 1 reports the detailed ablation results. We found
that the performance deteriorates when β is too small or too
large, indicating that a balance between supervised learning
and unsupervised learning is crucial to good performance
for our Humble Teacher. According to the ablation study,
we set β = 0.5 across all experiments in the main paper
and did not optimize them for particular experiments.

β 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

mAP 28.59 30.10 31.24 31.57 31.64 31.53 30.47 29.48

Table 1: The results of models with different unsupervised
weight β on 10% labeled MS-COCO 2017 train (split 1),
evaluated on the MS-COCO 2017 val set.

2. Ablation on Unsupervised Localization
We study whether the unsupervised loss on bounding

box regression heads improves the performance of the fi-
nal model. In this experiment, we compare enabling and
disabling both bounding box regression heads for unsuper-
vised loss. We keep other parameters the same. The basic
experimental setup follows Sec. 1, except the number of re-
gion proposals used in the second stage of detection is set to
640, following the main paper. The results in Tab. 2 show
that unsupervised learning on localization improves the fi-
nal performance.

Model with localization without localization

mAP 31.83 30.78

Table 2: Comparison between models with unsupervised
localization enabled and disabled. The models are trained
on 10% labeled MS-COCO 2017 train (split 1), evaluated
on the MS-COCO 2017 val set.

3. Hard Label Experiments
This section studies how different hyper-parameters im-

pact the performance of models using hard labels. As we
compare our models with the hard label models in the main
paper, for fair comparison, we believe it is important to un-
derstand how hard label models perform the best.

There are two hyper-parameters for the hard label ex-
periments: the weight β of pseudo-label loss, and the con-
fidence threshold θ as the threshold for accepting hard
pseudo-labels as training samples.

3.1. β: the Weight of Pseudo-Label Loss

We study how the weight of unsupervised loss β affects
the model performance. Denote SS as the labeled dataset
and SU as the unlabeled dataset. As shown in Eqn. 2, the to-
tal loss L of a hard label model is the sum of two losses: the
loss on labeled images SS and the loss on pseudo-labeled



images SU . Lrcnn is the sum of standard Faster R-CNN
losses. As in Sec. 1, nU , nS are numbers of the unlabeled
images and labeled images, where β is an additional weight
on unsupervised loss.

L = Lrcnn(x)|x∈SS
+ β

nU
nS

Lrcnn(y)|y∈SU
(2)

For all the experiments, we perform experiments on MS-
COCO train with 10% data labeled and use label-unlabeled
data split 1 generated by code and random seed from [5].
We adopt Faster R-CNN [4] with FPN [3] and ResNet-
50 [2] as our base model.

The results are shown in Fig. 1. We see that the model
performs the best when β is between 0.09 and 0.10. For the
overall best performance on different data splits, we used
β = 0.1 for the hard label experiments in our main paper.
We find that the soft-label model outperforms the best hard-
label model even with extensive parameter tuning for the
hard label model directly on MS-COCO 2017 val.
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Figure 1: Comparison between hard label models with dif-
ferent β trained on 10% labeled MS-COCO 2017 train (split
1), evaluated on the MS-COCO 2017 val set.

3.2. θ: the Confidence Threshold for Hard Labels

In this section we study how the confidence threshold of
hard labels affects the final model performance. A reason-
able confidence threshold for filtering low-quality pseudo-
labels is crucial for hard label models. Here we leave other
parameters unchanged and only modify confidence thresh-
old.

The results in Fig. 2 shows that the best threshold is be-
tween 0.7 and 0.8. We select θ = 0.7 in the main paper as it
leads to the best overall performance among five splits. The
result suggests that the soft-label model still outperforms
the best hard-label model.

4. Augmentation Details
The strong augmentation we applied to our model fol-

lows [5]. The augmentation consists of two operations: one
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Figure 2: Comparison between hard label models with dif-
ferent θ trained on 10% labeled MS-COCO 2017 train (split
1), evaluated on the MS-COCO 2017 val set.

operation changes the color, and another operation applies
Cutout [1]. The configuration of the first operation is one
randomly picked from the following operations, assuming
all random numbers are sampled from uniform distribu-
tions:

1. Identity: no changes at all.

2. Apply Gaussian blurring with a standard deviation ran-
domly taken from (0, 3).

3. Apply average blurring by computing means over
neighbourhoods. The kernel size is randomly picked
from (2, 7).

4. Sharpen a image and then alpha-blend the result with
the original input image. The blending factor is ran-
domly taken from (0, 1), where 0 means only the orig-
inal image and 1 means only the sharpen image. The
lightness/brightness of the sharpened image is taken
from (0.75, 1.5).

5. Apply noise sampled from Gaussian distributions ele-
mentwise to the input images. The means of the Gaus-
sian distributions are set to 0. The standard devia-
tions of the Gaussian distributions are sampled from
(0, 0.05), which is relative to the maximum pixel value
in the image format. Noise is applied on 50% of im-
ages per-channel.

6. Invert the color with 5% of probability.

7. Add a value randomly taken from (-10, 10) to 50% of
image pixels per channel.

8. Multiply each pixel with a value sampled from (0.5,
1.5). This operation applies to 50% of pixels per chan-
nel.

9. Multiply the contrast by a value randomly taken from
(0.5, 2) per channel for the given input image.



The second operation is a Cutout. For each image, fill a
random number α of cutout square patches on the original
image with size either 0 or 0.2 of the input image height.
A Cutout patch with size 0 means that particular patch is
canceled. α is randomly taken from (1, 5).
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