
Supplementary Material of Layerwise Optimization by Gradient Decomposition
for Continual Learning

Shixiang Tang1† Dapeng Chen3 Jinguo Zhu2 Shijie Yu4 Wanli Ouyang1

1The University of Sydney, SenseTime Computer Vision Group, Australia 2Xi’an Jiaotong University
3Sensetime Group Limited, Hong Kong 4Shenzhen Institutes of Advanced Technology, CAS
tangshixiang@sensetime.com dapengchenxjtu@yahoo.com wanli.ouyang@sydney.edu.au

1. Proof of Lemma 1
Proof. Following singular value decomposition (SVD) [1],
X = UΣV >, where U ∈ RN×N and V ∈ Rn×n are uni-
tary matrices, Σ ∈ RN×n is rectangular diagonal matrix
with r non-zero diagonal entries. That is, Σ has n− r zero
column vectors. Without loss of generality, we assume that
these zero column vectors are the last n− r column vectors
of Σ. Thus, X = Y A, where Y ∈ RN×r is formed by the
first r column vectors of U , andA ∈ Rr×n is formed by the
first r row vectors of ΣV >. The resulting Y and A satisfy
that Y >Y = I and rank(A) = r.

As rank(A) = r, AA> ∈ Rr×r is full rank. Therefore,
for any v ∈ RN , v>X = v>Y A = 0 implies v>Y = 0.
On the other hand, v>Y = 0 implies v>Y A = v>X = 0,
which completes the proof.

2. Solution to Equ. (10)
Since the objective ||w − g||22 is quadratic with positive

definite second-order coefficient and all the constrains are
affine, the optimization in Equ.(10) of the main manuscript
is convex. Therefore, Karush–Kuhn–Tucker (KKT) condi-
tions [1] applies.

The Lagrangian function of the original constraint opti-
mization problem can be defined as follows:

L(w, µ, λ) =
1

2
||w − g||22 − µḡ>w + λ>B>w, (1)

where µ ≥ 0. Following KKT conditions, the solution to
the original optimization problem should satisfy:

∇wL(w, µ, λ) = 0

B>w = 0

−ḡ>w ≤ 0

µ ≥ 0

−µḡ>w = 0

(2)

†This work was done when Shixiang Tang was an intern at SenseTime.

Solving these equations, we have

w =

{
Pg, ḡ>Pg ≥ 0

Pg − ḡ>Pg
ḡ>P ḡ

P ḡ, ḡ>Pg < 0
(3)

where P = I−BB>.

3. Comparison with other Relaxation Methods
In this section, we first illustrate the effectiveness of PCA

relaxation compared with other relaxation methods. We de-
note K as the rank of task-specific matrix after relaxation.
In order to show that the PCA relaxation can preserve the

Split CIFAR100 Split CIFAR100

Split TinyImageNet Split TinyImageNet

Figure 1: Average Accuracy and Backward Transfer with differ-
ent relaxation methods. FirstK: preserving the first K elements
of task-specific gradients matrix Ĝ. LastK: preserving the last K
elements of task-specific gradients matrix Ĝ.

important information in the task-specific constraints, we
compare PCA Relaxation with other two methods. FirstK
is to relax the task-specific matrix by preserving its first K
elements and LastK is to relax the task-specific matrix by

preserving its last K elements. Here, the first/last K ele-
ments correspond to the gradients of the first/last K episodic
memory tasks.

As illustrated in Figure 1, the PCA relaxation method
outperforms FirstK and LastK under different value of K.
This phenomenon is partly due to that PCA relaxation pre-
serves more knowledge than other methods. This explana-
tion can be confirmed by larger BWT of PCA Relaxation at
different K. In addition, We observe that FirstK outperforms
LastK in Figure 1. This phenomenon may result from that
tasks learnt earlier are easier to be forgotten than those tasks
learnt later.

4. Proof of P is positive semidefinite
P = IN − BB>, where B ∈ RN×r, r < N and

B>B = Ir. The following proof indicates that P is pos-
itive semidefinite.

Proof. Following singular value decomposition [?], B =
UΣV >, where U ∈ RN×N and V ∈ Rr×r are unitary
matrices, Σ ∈ RN×r is rectangular diagonal matrix with r
non-negative real numbers on the diagonal.

We first show that Σ>Σ = Ir. Since B>B = Ir,
V Σ>ΣV > = Ir. Since V is unitary, Σ>Σ = Ir.

We then show that ∀v ∈ RN , v>BB>v ≤ v>v. Since Σ

is rectangular diagonal and Σ>Σ = Ir, ΣΣ> =

[
Ir 0
0 0

]
.

Therefore,

v>BB>v = v>UΣΣ>U>v

= (v>UΣΣ>U>v)

= (ΣΣ>U>vv>U)

≤ (U>vv>U)

= (v>UU>v)

= v>UU>v

= v>v.

(4)

Thus, ∀v ∈ RN , v>Pv = v>v − v>BB>v ≥ 0, which
completes the proof.

5. Computational complexity reduction by
LGU.

The main cost of our algorithm stems from Equ.(11) in
the main text. We take (d) and (f) in Table 1 to analyze the
time complexity of layerwise update. Denote T as the to-
tal task number and N as the number of model parameters.
The total time cost of (d) is O((T + 1)N2 + (2T 2 + 1)N):
O(2T 2N) for calculating B by Schmidt process, O(TN2)
for calculating P , and O(N2 + N) for getting w. Simi-
larly, the total time cost of (f) is roughlyO((T +1)N2/L+
(2T 2 + 1)N), where L is the number of network layers.
Since L > 1, the time cost of (f) is possibly less than that

of (d). By implementing 3-epochs setting experiments on
MNIST, we found the running time of (d) and (f) for 20
tasks was 286.3s and 253.4s respectively, which empirically
verified our analysis.

References
[1] S. Boyd and L. Vandenberghe. Convex optimization. Cam-

bridge university press, 2004. 1

