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This Supplementary provides the following contents: 1)
The architecture of Netcoords and Netconf as described in
Sec.3.3.2 and Sec.3.3.3 of the main paper. 2) Additional
analysis on the effectiveness of top K sorting strategy and
the selection of parameters, i.e., image resolution and the
number of scene images. In the end, we present more visu-
alization results on the comparison of estimated coordinate
maps with different methods.

1. Archtecture of Netcoords and Netconf .
Fig. 1 shows the architecture of Netconf and Netcoords.

The input of Netcoods is a H l×W l×4K (K = 16 in imple-
mentation) cost-coordinate volume formed by concatenat-
ing the cost volume with 3D scene coordinates. As shown
in Fig. 1, Netcoods consists of 3 residual blocks [1] and
one denseblock [2]. The residual blocks consist of 1 × 1
convolutional layer. It takes input of cost-coordinate vol-
ume and generates a H l×W l×64 coordinate feature map.
Then, the scene coordinate map is estimated by the dense-
block, which takes the concatenation of image features, co-
ordinate features and the initial coordinate map up-sampled
from last layer (if applicable). On the other hand, Netconf
consists of 5 residual block with context normalization [3].
It takes the concatenation of the estimated scene coordinate
map with the corresponding 2D pixel coordinate map and
estimates a confidence score for each pixel.

2. Additional Analysis
This section provides additional analysis of DSM. All

the experiments are conducted on 7scenes dataset. The data
processing and training process are the same as described in
the main paper. At the inference time, We use 1 out of every
10 frames for each sequence. Pose accuracy, the percentage
of predicted poses falling within the threshold (5◦, 5cm), is
used as the evaluation metric.
Effects of correlation sorting. As described in Sec.3.3.1
of the main paper, one of the procedures in cost volume
construction is sorting and selecting top K coordinates for
each pixel from the correlation tensor. The motivation be-
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Figure 1: Archtecture of Netconf and Netcoords. We use
residual block for Netconf and dense block for Netcoords

hind this operation is two-fold. Firstly, as the number of re-
trieved scene images varies, top K selection results in a cost
volume with a fixed size. Secondly, a sorted cost volume
leads to a more accurate estimated coordinate map. To ver-
ify the effectiveness of correlation sorting, we fix the scene
image number to 5 and directly use the correlation tensor as
the cost volume for coordinate map regression. The results
are shown in Table. 1. It can be seen that the estimated pose
accuracy improves by correlation sorting consistently on all
sequences. Moreover, since top K sorting and selection re-



Chess Fire Heads Office Pumpkin Kitchen Stairs
No sorting 0.82 0.74 0.85 0.72 0.43 0.58 0.05

Sorting 0.96 0.95 1.0 0.88 0.53 0.72 0.66

Table 1: Pose accuracy with/without top K correlation sort-
ing. The estimated pose accuracy improves by correlation
sorting consistently on all sequences.

Num. Chess Fire Heads Office Pumpkin Kitchen Stairs
1 0.87 0.85 0.87 0.71 0.45 0.63 0.17
3 0.90 0.94 0.91 0.79 0.46 0.67 0.20
5 0.94 0.94 0.94 0.80 0.54 0.68 0.24

10 (?) 0.96 0.95 1.0 0.88 0.53 0.72 0.66

Table 2: Pose accuracy with respect to the number of scene
images. The network is trained and tested with the corre-
sponding number of scene images except the one with 10
scene images. The notation (?) means we train the network
with 5 scene images instead of 10 scene images.

Reso. Chess Fire Heads Office Pumpkin Kitchen Stairs
192× 256 0.92 0.84 0.89 0.78 0.49 0.64 0.23
384× 512 0.96 0.95 1.0 0.88 0.53 0.72 0.66

Table 3: Pose accuracy with respect to different image reso-
lutions. In our implementation, We resize all images to res-
olution of 384× 512 for better efficiency and performance.

sults in a fixed-size cost volume, we can use different scene
image numbers for training and testing. During the train-
ing process, the scene image number can be fixed for better
efficiency while for inference we can leverage more scene
images for higher accuracy.
Number of scene image. To show the effects of scene im-
age number N , we change N from 1 to 10 in the train-
ing and testing process to evaluate the pose accuracy. The
model is re-trained with respect to the corresponding scene
image number for N = 1, 3, 5. Since training with more
than 5 scene images leads to unacceptable GPU memory
consumption, we still use 5 scene images in training when
testing with 10 scene images. As shown in Table 2, increas-
ing N from 1 to 5 results in higher pose accuracy. In ad-
dition, we can see that 10 scene images obtain higher per-
formance than 5 scene images. This indicates that even if
the model is trained with fewer scene images, leveraging
more scene images leads to better performance. Consider-
ing the trade-off between performance and efficiency, we
set N = 10 in the main paper.
Image resolution. We test our model using 2 different im-
age resolution size 192 × 256 and 384 × 512. As shown
in Table. 3, we can see the resolution of 384 × 512 out-
performs 192 × 256. A higher resolution than 384 × 512
could consume more GPU memory and lead to slower run-
ning time. Therefore, we resize all the images to 384× 512
in our system for better efficiency.

More coordinate map visualization. Fig. 2 provides more
visualization results on the comparison of estimated coordi-
nate maps from SANet, DASC++, and our method (DSM).
In general, the coordinate maps produced by DSM recover
more details as in the ground truth and have fewer artifacts
than SANet and DSAC++.
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Figure 2: Coordinate map visualization for SANet, DSAC++ and DSM. The coordinate maps produced by DSM recover
more details as in the ground truth and have fewer artifacts than SANet and DSAC++.


