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A. Implementation Details

We adopted the MMSegmentation [1] codebase to im-
plement the boundary patch refinement network. We al-
most followed the same training protocol as HRNet. The
image patches are augmented by random horizontal flip-
ping and random photometric distortion. The binary mask
patches are normalized with the mean and standard devi-
ation both equal to 0.5. We use the SGD optimizer with
the initial learning rate of 0.01, the momentum of 0.9, and
the weight decay of 0.0005. The learning rate is decayed
using the poly learning rate policy with the power of 0.9.
The models are trained for 160K iterations with a batch size
of 32 on 4 GPUs.Taking the default setting adopted in ab-
lation studies as example, we extracted 280k/67k patches
from the train/val results of Mask R-CNN (adopted from
MMDetection [2]). It takes about 10 hours of training on
4 NVIDIA RTX 2080Ti GPUs under this setting.

B. Different Patch Extraction Schemes

In Section 4.2, we compared the proposed “dense sam-
pling + NMS” scheme with another two patch extraction
schemes: pre-defined grid and instance-level patch. Here
we provide the implementation details and further analysis
of these two schemes. As illustrated in Figure S1b, the pre-
defined grid scheme simply divides the input image into a
group of patch candidates according to a pre-defined grid.
Candidates that covering both foreground and background
pixels are choosen as boundary patches for refinement. This
straightforward scheme yields plenty of inferior patches, as
indicated by yellow dashed boxes in Figure S1b, which have

∗Equal contribution.
†Corresponding author.

the imbalanced foreground/background ratio and may lack
of real boundary cues, thus leading to sub-optimal results.
Another scheme is extracting the instance-level patch (Fig-
ure S1c) based on the detected bounding box, which is sim-
ilar to previous studies [6, 7]. This scheme can be viewed
as an improved Mask R-CNN equipped with a stand-alone
mask head, while still fails to solve the optimization bias
issue and the learning process is dominated by interior pix-
els. Different from these methods, by adaptively extracting
patches along the predicted boundaries in a sliding-window
style (Figure S1a) and refining the local boundary regions
separately, the above issues can be alleviated.

C. More Speed Analysis
The inference time of our proposed framework is in-

dependent of the original instance segmentation models,
which consists of three parts: patch extraction, refinement,
and reassembling. Note that only the refinement part was
considered when calculating the FPS in Table 5 and 6. Be-
sides, the FPS was measured in an imprecise manner by
fixing the batch size to 135 (average number of patches
per image), while the exact number of patches varies from
image to image. Here we report the total inference time,
which measured by calculating the exact inference time for
each image individually and then averaging them. Tak-
ing the default setting (HRNet-W18s with input size of
128×128) in our ablation experiments as example, it takes
about 211ms (52ms,81ms,78ms for the above three parts re-
spectively) to process an image (1024×2048) of Cityscapes
on a single RTX 2080Ti GPU, which is still much faster
than PolyTransform (575ms1 per image [6]). Undoubt-
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edly, the network speed can be further improved with more
efficient backbones (e.g. MobileNets), smaller input size
(e.g. 32×32 or 64×64), and less inference patches (e.g.
with lower NMS thresholds or adaptively selecting the most
unreliable patches). Note that the BPR models can still
achieve a remarkable performance under these lightweight
settings (Tables 5,6,7). The patch extraction and reassem-
bling steps can also be accelerated with more CPU cores.

D. More Analysis on COCO Dataset
In theory, the proposed framework, as a general bound-

ary refinement mechanism, can be applied to any instance
segmentation dataset. We achieved impressive performance
on Cityscapes, while the AP improvement on COCO dataset
was not as high as we got on Cityscapes (see Table 10). The
most critical problem is that the coarse polygon-based an-
notations on COCO dataset yield significantly lower bound-
ary quality [5]. Several examples (which are ubiquitous on
COCO) are shown in Figure S2. The misalignment between
annotations and real instance boundaries may greatly in-
crease the optimization difficulty of our refinement model.
Especially, the coarse annotations may provide ambiguous
optimization objectives for our local boundary patches, thus
hampering the model convergence. We observed that some
contour-based instance segmentation methods [8, 9, 10],
which are sensitive to the quality of boundary annotations,
also suffered from this misalignment issue. It seems that the
coarse COCO annotations may not friendly to these meth-
ods and it is hard to achieve very high AP scores based on
these approaches. In spite of this, we still significantly im-
proved the Mask R-CNN results in some cases, shown in
Figure S3. Some results are even better than their annota-
tions (the first three examples in Figures S2, S3).

E. More Qualitative Results
We provid more qualitative results on Cityscapes val,

including image-level (Figure S4) and patch-level (Fig-
ure S5) results. As shown, our proposed framework consis-
tently improves the instance segmentation results of Mask
R-CNN and produces substantially better instance masks
with more precise boundaries.

F. Limitation Analysis
The performance of our proposed framework relies on

the boundary quality of initial masks. Some failure cases
are illustrated in Figure S6. For example, our model failed
to produce an optimal mask if the initially predicted bound-
aries are far from the real object boundaries (1st row), but
note that we still refined this case to some extent (IoU was
improved). In addition, if the initial mask largely over-
segments the neighboring instance, our model may regard
the two instances as a whole and further enlarge this error

(a) dense sampling + NMS filtering

(b) pre-defined grid

(c) instance-level patch

Figure S1: Illustration of three different patch extraction
schemes. Best viewed digitally and in colour.

(2nd and 3rd rows) since we only process the local bound-
ary regions without a global view. We analyzed the IoU im-
provements for all predicted instances on Cityscapes val set,
shown in Figure S7. In most cases, our refinement model
can effectively improve the mask IoU (red dots above the
dash line). However, we found that it’s hard to refine in-
stance masks with extremely lower IoU (e.g. < 0.1) due to
the poor quality of initial boundaries. In addition, we ob-
served that the improvement for smaller instances (about
2% in APS) is not as high as we got for larger instances
(about 5% in APL). Compared to the upper-bound results
(Table 1 of the main paper), there is still a large step to take
for boundary refinement, especially for small instances.

G. More Transferring Results

In Table 9, we verified that the BPR model trained on
Mask R-CNN results can be effectively transferred to refine
the results of PointRend and SegFix. As an opposite direc-
tions with Table 9, we instead trained the BPR model on
PointRend or SegFix results and transferred them to refine
the Mask R-CNN predictions. As shown in Table S1, the
transferring is also workable.



Figure S6: Illustration of some failure cases.
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Figure S7: IoU improvements for all predicted instances on
Cityscapes val set. Each red dot indicates an instance. Dots
below the dash line are failure cases.

AP AP50 AF
Mask R-CNN 36.4 60.8 54.9
w/ BPR (trained on PointRend) 38.7 61.5 64.2
w/ BPR (trained on SegFix) 39.1 61.7 64.1

Table S1: BPR models were trained on PointRend and Seg-
Fix results respectively, and transferred to refine the Mask
R-CNN predictions.

H. Cityscapes Leaderboard
Our “PolyTransform + Segfix + BPR” model reached

1st place on the Cityscapes leaderboard (42.7% AP) by the

CVPR 2021 submission deadline. We outperformed the 2nd

place solution (Naive-Student [3]) by 0.1% AP, while it re-
quires the unlabeled video data and extra images to perform
semi-supervised learning. Panoptic-DeepLab [4] surpassed
our results after the CVPR deadline, while it also requires
the unlabeled video data. For a fair comparison, without us-
ing any extra data (except ImageNet or COCO pre-training),
we outperformed the best publicly available solution [11]
by a large margin (+1.5% AP). Undoubtedly, the results
on Cityscapes can still be improved by applying BPR on
stronger baseline models (e.g. Panoptic-DeepLab [4]).
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Figure S2: Illustration of the coarse annotations on COCO val2017. The annotated instance masks are not well-aligned
with the real object boundaries. Best viewed digitally and in colour.

Figure S3: Qualitative results on COCO val2017. The proposed framework (2nd and 4th rows) generates substantially
better masks with more precise boundaries than Mask R-CNN (1st and 3rd rows). Best viewed digitally and in colour.
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Figure S4: Qualitative results on Cityscapes val. The proposed framework (2nd and 4th rows) produces substantially better
masks with more precise boundaries than Mask R-CNN (1st and 3rd rows). Best viewed digitally and in colour.



Figure S5: Boundary patch examples of: ground-truth (1st and 4th columns), predictions of Mask R-CNN (2nd and 5th
columns), results refined by our proposed framework (3rd and 6th columns). Best viewed digitally and in colour.


