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Figure S1. Coefficient A(x;) that controls network sparsity for
complex and simple instances.

1. Coefficient \(x;) for different instances

In the training procedure, the coefficient A(x;) (Eq. (6)
of the main paper) controls the weight of sparsity loss ac-
cording to the complexity of each instance. Recall that
Mz)) = N - ﬂz%@w) € [0,N], where X is a
fixed hyper-parameter for all instances. Using ResNet-56
as the backbone, the variable parts A\(z;)/\N € [0,1] for
complex/simple examples in CIFAR-10 are shown in Fig-
ure S1. A(x;)/ )\ keeps small for complex examples (e.g.,
the vague ‘ship’ in (a)) and then less channels of the pre-
defined networks are pruned for keeping their representa-
tion capabilities. When sending simple examples (e.g., clear

*Corresponding author.

20
40

60
80

100

120

Figure S2. Similarity matrices. (a) Similarity matrix R! for inter-
mediate features without similarity loss. (b) Similarity matrix 7"
for channel saliencies without similarity loss. (c) Similarity ma-
trix R’ for intermediate features with similarity loss. (d) Similarity
matrix 7" for channel saliencies with similarity loss.

‘airplane’ in (b)) to the dynamic network, A(x;)/\" keeps
large in most of the epochs, and thus the corresponding sub-
network becomes sparser continuously as the numbers of it-
eration increases. Note that A(x;)/\’ changes dynamically
in the training process. For example, the sparsity weight
automatically decreases in the last few epochs as the cor-
responding sub-network is compact enough and should pay
more attention to accuracy (Figure S1 (b)), which ensures
that the models can fit input instances well.



2. Similarity Matrices

The similarity matrices R' for intermediate features and
T! for channel saliencies are shown in Figure S2, where
different colors denote the degree of similarity (i.e., a yel-
lower point means higher degree of similarity between
two instances). The ResNet-56 model trained with/without
the similarity loss L, (Eq. (10) in the main paper) is
used to generate features and channel saliencies for cal-
culating the similarity between instances randomly sam-
pled from CIFAR-10. When training dynamic network
without similarity loss L, the similarity calculated by
features and that by channel saliencies are very different
(Figure S2 (a), (b)). When using similarity loss (Fig-
ure S2 (c), (d)), the similarity matrices R' and T" are more
analogous as the similarity loss penalizes the inconsistency
between similarity matrices to align the similarity relation-
ship in the two spaces.

3. Visualization of instances with different
complexity

We sample representative images with different com-
plexity from ImageNet and intuitively show them in Fig-
ure S3. From top to bottom, the computational costs of
sub-networks used to predict labels continue to increase. In-
tuitively, simple instances that can be accurately predicted
by compacted networks usually contain clear targets, while
the semantic information in complex images are vague and
thus requires larger networks with powerful representation
capability.
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Figure S3. Images with different complexity on ImageNet. From
top to bottom, the computational costs of sub-networks used to
predict labels continue to increase.



