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Appendix
Proof of Theorem 1
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Thus, the inverse of Ω
(λ)
` is given as follows,
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Via above steps, an analogous formulation of (Γ(λ)
` )−1 can be derived. �

There is another brief proof by introducing an existing theorem.

Theorem If X and Im −VX−1U are invertible for given X ∈ Rn,U ∈ Rn×m, V ∈ Rm×n, then X−UV is invertible and
following equation is hold,

(X−UV)−1 = X−1 + X−1U(Im −VX−1U)−1VX−1. (8)
It is well-known Woodbury formulation (Woodbury 1950), and a detailed review is given in (Hager 1989).

We begin with rewriting (Ω
(λ)
` )−1 = λI + ATA

M to obtain an analogous formulation as equation (8).

(Ω
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A√
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AT

√
λM

)−1. (9)

By direct substituting equation (10) into equation (8),

X = −λIn,U =
1√
λM

AT ,V =
1√
λM

A. (10)

Then, following equation is obtained.

(Ω
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1
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1
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ATA)−1AT . (11)

An analogous formulation of the (Γ
(λ)
` )−1 can be obtained by the above process. �



Additional Figures
Following figures demonstrate the convergence curves of error rates and loss function values with respect to epochs.
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(a) VGG-11 (b) ResNet-34

Figure 1: Validate error for VGG-11 and ResNet-34 on Cifar-10 dataset.

(a) VGG-11 (b) ResNet-34

Figure 2: Training loss for VGG-11 and ResNet-34 on Cifar-10 dataset.

Figure 3: Training loss for ResNet50 on ImageNet-1000 dataset.



Additional experiments
To verify the time saving of training neural networks, we report the wall-clock time of running the algorithms on ResNet34 and
VGG11. This method can accumulate the wall-clock training time of relatively small models on Cifar10 as shown in Table 1.

Table 1: Wall-clock time when reaching 90% validation accuracy

Alogorithm Adam KFAC SGD RS SS 1 SS 2
ResNet34 62.45 50.22 52.58 49.45 50.32 47.45
VGG11 37.67 40.63 32.15 28.02 24.27 26.90

*(Ours) RS: SKFAC ReduceSum SS 1: SKFAC SpatialSampling 1 SS 2: SKFAC SpatialSampling 2

Moreover, the approximate errors are measured in every epoch for showing the effectiveness of our proposed on approximat-
ing factors of Fisher information matrices. We show the approximate errors in Figure 4.
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Figure 4: The absolute error between the exact inverse of Fisher information matrix and the approximation by the proposed
method.
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