SKFAC: Training Neural Networks with Faster Kronecker-Factored Approximate Curvature

Appendix
Proof of Theorem 1
Proof Since (QM)~1 = —3(-IL, - \;‘/‘\LM\/%)_I, letX = -I,and Y = \/%, where A € R™*™_ Formulate a matrix,
X YT
[ Y I } - 1
What’s been apparent is that following formulations are hold.
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It is easy to verified that,
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Combining equation (3) with equation (4), we get the inverse of equation (1):
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Then, the inverse of equation (2) can be obtained by
(X -YTY)! 1, X Y']'[1, YT
L. | |Y I, Y I, | P
— In In *YT X In In YT
Y 1, L, L, +YYH" 1 || =Y I, L,
= diag X+ YT (1, +YY")7'Y,1,). (6)
Thus, the inverse of Qg’\) is given as follows,
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(Qg,\))—l = ——(-I, - )1
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Via above steps, an analogous formulation of (1"§’\))_1 can be derived. OJ
There is another brief proof by introducing an existing theorem.

Theorem If X and I, — VX U are invertible for given X € R™, U € R"*™ V € R™*" then X — UV is invertible and
following equation is hold,

(X -UV)'=x"'!'4+XxX"'U@T, - vxX'u)lvx L (8)
It is well-known Woodbury formulation (Woodbury 1950), and a detailed review is given in (Hager 1989).

We begin with rewriting (Qé’\))_1 =+ LMA to obtain an analogous formulation as equation (8).
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By direct substituting equation (10) into equation (8),

1 1
X=-)\,U=——AT vVv=—_A. 10)
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Then, following equation is obtained.
1 1 1

QN1 -1 -~ AT, + —ATA) AT, 11

An analogous formulation of the (I‘g)‘))*1 can be obtained by the above process. [



Additional Figures

Following figures demonstrate the convergence curves of error rates and loss function values with respect to epochs.
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Figure 1: Validate error for VGG-11 and ResNet-34 on Cifar-10 dataset.
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Figure 2: Training loss for VGG-11 and ResNet-34 on Cifar-10 dataset.
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Figure 3: Training loss for ResNet50 on ImageNet-1000 dataset.




Additional experiments
To verify the time saving of training neural networks, we report the wall-clock time of running the algorithms on ResNet34 and
VGG11. This method can accumulate the wall-clock training time of relatively small models on Cifar10 as shown in Table 1.

Table 1: Wall-clock time when reaching 90% validation accuracy

Alogorithm Adam KFAC SGD RS SS.1  SS2
ResNet34 6245 5022 5258 4945 5032 47.45
VGGI11 37.67 40.63 32.15 28.02 2427 26.90
*(Ours) RS: SKFAC_ReduceSum SS_1: SKFAC_SpatialSampling_1 SS_2: SKFAC_SpatialSampling_2

Moreover, the approximate errors are measured in every epoch for showing the effectiveness of our proposed on approximat-
ing factors of Fisher information matrices. We show the approximate errors in Figure 4.
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Figure 4: The absolute error between the exact inverse of Fisher information matrix and the approximation by the proposed
method.
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