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In this supplementary material, we provide additional
details, ablation studies, evaluations and visualizations.

1. Training Details
In this section we add additional details regarding the

training procedure and discuss difference among datasets.

1.1. Training Setup

The SceneFlow dataset consists of 3 components (Fly-
ingthings, Driving and Monkaa) and comes with a prede-
fined train and test split with ground truth for all examples.
Following the standard practice with this dataset we use the
predefined train and test split for all experiments. We also
used only FlyingThings part of the dataset, as Driving and
Monkaa don’t have corresponding TEST sets and includ-
ing them into training hurts accuracy for both Sceneflow
and when it’s used to pre-train for Middlebury. When all
35k images are used to train a model, the PSM EPE of XL
model is 0.41 on ”finalpass”. We considered random crops
of 320× 960 and a batch size of 8, and a maximum dispar-
ity of 320. We trained for 1.42M iterations using the Adam
optimizer, starting from a learning rate of 4e−4, dropping it
to 1e−4, then to 4e−5, then to 1e−5 after 1M, 1.3M, 1.4M
iterations respectively. The general robust loss for Scene-
Flow experiments was applied with, α = 0.9, c = 0.1. For
all other experiments, α = 0.8, c = 0.5.

For real world datasets such as KITTI 2012 and 2015
a training set with ground truth and a test set where the
ground truth is not available is provided. For the bench-
mark submission we trained the network on all 394 images
available from both datasets. For ablation studies on the
KITTI dataset we split training set into a train and valida-
tion set with 75% of the data in the training set and 25% of
the data in the validation set. We trained with data augmen-
tation, batch-size of 4 and random crops of 311×1178 and a
maximum disparity of 256. The training schedule followed
the following step: 400k iterations with learning rate 4e−4,

followed by 8k iterations with learning rate 1e−4, followed
by 2k iterations with learning rate 4e−5. Note that the net-
work is not pre-trained on any other datasets as in [15], and
a small training set is sufficient for our method to achieve
good performance.

Indeed, empirically we found that using a small initial
learning rate 1e−4 and training for longer achieves the best
results on multiple datasets without showing sign of over-
fitting. In Figure 2 we show the evolution of the training
HITNet L for more than 200 epochs (learning rate change to
1e−5 after 200 epochs) on the SceneFlow cleanpass dataset.
We also compared this scheme with using a higher starting
learning rate (1e−3): after 10 epochs we observed EPE of
0.85 for 1e−4 and 0.66 for 1e−3. Although 1e−3 achieved
smaller error within a few epochs, our experiments confirm
that longer training with a small learning rate is beneficial to
achieve higher quality results without overfitting. See also
generalization experiment showing that the method has very
good cross-dataset performance.

The training set for the real world ETH3D stereo dataset
[11] contains just a few stereo pairs, so additional data is
needed to avoid overfitting. For the benchmark submission
we trained the network on all 394 images from both KITTI
datasets, as well as all half and quarter resolution training
images from Middlebury dataset V3 [10] and training im-
ages from ETH3D dataset. We used the same training pa-
rameters as for KITTI submission and stopped training af-
ter 115k iterations, which was picked using 4 fold cross-
validation on ETH3D training set. Note that there is no ad-
ditional training, pre-training, finetuning.

Similarly, the Middlebury dataset [10] contains a lim-
ited training set. To avoid overfitting, we pre-trained the
model on SceneFlow’s FlyingThings TRAIN set with data
augmentation, then fine-tuned on the 23 Middlebury14-
perfectH training images, while keeping all data augmenta-
tions on. Specifically, we used a HITNet Large model with
initialization at 6 scales (M=5), pre-trained it for 445k itera-



Figure 1: Qualitative Results on KITTI 2012 and 2015.
Note how HITNet is able to recover fine structures and crisp
edges using a fraction of the computational cost required by
other competitors.

tions, using batch size of 8 and random crops of 512× 960.
We initialize the learning rate to 4e−4, then gradually drop it
to 1e−4, 4e−5 and 1e−5 after 300K, 400K, 435K iterations
respectively. Finally, we fine-tuned the model for 5K itera-
tions at 1e−5 learning rate. These parameters were selected
by using 4-fold cross validation on Middlebury training set.

1.2. Data Augmentation

The training data available may not be fully representa-
tive of the actual test sets for small real world datasets such
as KITTI, ETH3D and Middlebury. Indeed, we often ob-
served substantial differences at test time, such as changes
in brightness, unexpected reflections and mis-calibrations.
In order to improve the network robustness we performed
the following augmentations. We first perturb the brightness
and contrast of left and right images by using random sym-
metric and asymmetric multiplicative adjustments. Sym-
metric adjustments are sampled within [0.8, 1.2] interval
and asymmetric between [0.95, 1.05]. Similar to [16], We
then replace random areas of the right image with random
crops taken from another portion of the right image: this
helps the network to deal with occluded areas and encour-
ages a better “inpainting”. The crop size to be replaced is
randomly sampled between [50,50] and [180, 250].

Finally, the Middlebury images contains a substantially
different color distribution compared to other datasets. To
mitigate this we used the approach from [12] that brings
color distribution of training images closer to that of Mid-
dlebury set and during test time we normalize color distribu-
tion between left and right images of a stereopair. Addition-
ally, similar to [16], in order to deal with miscalibrated pairs
of this dataset, we augmented the training data with random
y offset between [−2, 2] pixels. The random values for y
offset are generated at a low resolution [H/64, W/64], and
then bilineraly up-sampled to full resolution [H, W] of the
input image. To simulate different noise levels images with
different exposure contain, we add Gaussian random noise
with variance sampled between [0 and 5] intensity levels
once for the whole image.

2. Additional Evaluations

In this section we show additional qualitative results on
real-world datasets. In Figure 1 we show comparisons of
our method with other approaches. We consider multiple
representative competitors such as: GC-Net [5], which uses
the full cost volume and 3D convolutions to infer context,
RTS-Net [6] that has similar inference time than HITNet,
and finally GA-Net [17], as one of the best performing
methods in terms of accuracy.

Our method compares very favorably to other ap-
proaches such as GC-Net and fast methods like RTSNet
and is on par with the state-of-the-art approaches, e.g. GA-
Net [17]. Note how our method retrieves fine structures
and crisp edges, while only training on the KITTI datasets,
which exhibit significant edge fattening artifacts.

Similarly, in Figure 4 we show qualitative results on the
Middlebury dataset [10]. For each image, we compare HIT-
Net with the best performing competitor on the Bad 0.5 met-
ric. Note how our method is able to produce crisp edges,
correct occlusions and thin structures in all the considered
cases.

2.1. Intermediate Outputs

We show intermediate outputs from within our network
in Fig 3. We observe that with increasing resolution the
disparity gets more fine grained and the details from the
higher resolution initialization gets merged into the global
context that is coming from the lower resolutions. Note that
our results on the KITTI 2015 dataset are only trained on
the KITTI datasets from scratch without any pre-training on
other data sources. This means the network has not been su-
pervised on the top one third of the image as these datasets
do only provide ground truth for the bottom two thirds of
the image.



Figure 2: We show the evolution of the training reporting the EPE on training and test set respectively. Note how the scheme
reduces the error on both training and test set without showing signs of overfitting.

Figure 3: Intermediate results of our network on the left side we show the disparity maps that the matching of the initialization
stage provides. On the right hand side we show the final disparity and normals for each resolution. The final two resolutions
are 2x2 and 1x1 tiles of the highest resolution feature map, while the initialization is always computed on 4x4 tiles of the
feature maps.

2.2. Generalization.

We finally demonstrate the cross-domain adaptation ca-
pabilities of our method. Following the protocol in [13], we
trained HITNet on SceneFlow with data augmentations and
tested on KITTI 2012 and KITTI 2015 respectively. We
also considered multiple competitors as in [13] and report
the results in Tab. 1: note how our method shows superior

generalization results compared to all the other state-of-the-
art approaches. This shows that our method is able to ef-
fectively generalize to unseen dataset even without explicit
fine-tuning.



Dataset HITNet CRL [9] iResNet [7] PSMNet [2] EdgeStereo [13]
KITTI 2012 EPE 1.06 1.38 1.27 5.54 1.96

KITTI 2012 > 3px 6.44 9.07 7.89 27.33 12.27
KITTI 2015 EPE 1.36 1.35 1.21 6.44 2.06

KITTI 2015 > 3px 6.49 8.88 7.42 29.86 12.46

Table 1: Generalization Experiment. We trained each method on SceneFlow with data augmentation and tested on KITTI
2012 and 2015. Note how our method outperforms the others.

SceneFlow finalpass [8] KITTI 2012 [4]
Model EPE 0.1 px 1 px 3 px EPE 2 px 3 px
HITNet 0.529 px 24.0 % 5.52 % 3.00 % 0.484 px 2.91 % 2.00 %
4 Scales - - - - 0.507 px 3.10 % 2.20 %

No Multi-scale - - - - 0.747 px 4.76 % 3.62 %
4x4x4 Downsampled 0.561 px 26.4 % 5.88 % 3.15 % 0.526 px 3.16 % 2.19 %

16x16x8 Downsampled 0.615 px 27.5 % 6.36 % 3.39 % 0.536 px 3.35 % 2.30 %
16x16x1 Downsampled 0.651 px 31.9 % 7.28 % 3.62 % 0.554 px 3.60 % 2.51 %

No Warping 0.588 px 31.6 % 5.88 % 3.10 % 0.602 px 3.72 % 2.54 %
No Slant Prediction 0.548 px 25.2 % 5.74 % 3.08 % 0.513 px 3.23 % 2.18 %

No Tile Features 0.538 px 24.7 % 5.64 % 3.01 % 0.488 px 3.04 % 2.06 %
HITNet L 0.43 px 20.7 % 4.70 % 2.57 % 0.490 px 2.98 % 2.13 %

HITNet XL 0.36 px 18.2 % 4.09 % 2.21 % 0.492 px 3.11 % 2.20 %

Table 2: Ablation study of the proposed HITNet on SceneFlow [8] and KITTI 2012 [4] datasets. Lower is better.

2.3. Ablation Study

We analyze the importance of our proposed components.
The full HITNet is considered as baseline and compared
with a version where features are removed. The ablation
study is performed on the SceneFlow “finalpass” data and
KITTI 2012. See Figure 5 for a qualitative evaluation.

Multi Scale Prediction. The multi-scale feature affects
both initialization and propagation stages. In Tab. 2, we re-
port the results for the full model (HITNet) on KITTI 2012,
with 5 scales, results for 4 scales and finally we removed
the multi-resolution prediction completely. When we eval-
uated the same settings on the synthetic SceneFlow dataset
we did not find a substantial differences between a single
scale or multiple ones: clearly the synthetic dataset contains
much more textured regions that do not benefit of additional
context during propagation, whereas real world scenarios
are full of textureless scenes (e.g. walls), where the multi-
resolution approach is naturally performing better.

4x4x4 Downsampled. Initialization at full disparity reso-
lution provides a compelling starting point to the network,
which can focus mostly on refining the prediction. In Tab. 2
we show that using tile resolution for disparity (cost volume
is 4X downsampled in H, W and D dimensions), the accu-
racy substantially drops. This demonstrates the importance
of our proposed fast high resolution initialization.

16x16x8 Downsampled. Decreasing the resolution of the
cost volume for all dimensions similar to [14] degrades ac-
curacy (16X downsampled in H and W, 8X in D).

16x16x1 Downsampled. Using larger tiles, while main-
taining disparity resolution degrades accuracy even more,
as the network is not able to reason about precise disparity
at low spatial resolution during initialization.

Slant Prediction. In this experiment, we forced tile hy-
potheses to always be fronto parallel by setting dx and dy
to 0 and using bilinear interpolation for upsampling. As
showed in Tab. 2, removing the slant prediction leads to a
substantial drop in precision for both SceneFlow and KITTI
2012. Moreover the network loses its inherent capability of
predicting some notion of surface normals that can be useful
for many applications such as plane detection.

Tile Features. Here we removed the additional features
predicted on each tile during the initialization and propaga-
tion steps. This turns out to be a useful component and with-
out it we observe a decrease in accuracy for both datasets.

Warping. The image warps are used to compute the
matching cost during the propagation. Removing this step
hurts the subpixel precision as demonstrated in Tab. 2.



Figure 4: Qualitative comparisons on Middlebury dataset.
For each image we compare our method with the best per-
forming competitor following the Bad 0.5 metric. Note how
our method is able to produce crisp edges, correct occlu-
sions and thin structures in all the considered cases.

Model Size. Finally, we tested if an increase in the model
size is beneficial or not. In particular we double the chan-
nels in the feature extractor, and use 32 channels and 6
residual blocks for the last 3 propagation steps, this resorts
to a run-time increase to 54ms. As expected this has an
improvement on SceneFlow as reported in Tab. 2, HITNet
Large; however for the small KITTI datasets this did not
improve performance due to over-fitting. Further increas-
ing model size by using 64 channels for the last 3 propaga-
tion steps improved SceneFlow results, increased runtime
to 114ms, and increased over-fitting on a smaller dataset.
We don’t see a reason to explore larger model sizes on a
synthetic dataset as it will add to over-fitting on smaller real

datasets that are publicly available. The metrics on ”clean-
pass” for XL version are: 0.31 epe, 15.6 bad 0.1, 3.67 bad
1.0, 1.99 bad 3.0.

3. Model Architecture Details
By default, the HITNet architecture is implemented with

a 5-scale feature extractor with 16, 16, 24, 24, 32 channels
at corresponding resolutions. During Initialization step the
first convolution over 4 × 4 tiles outputs 16 channels, fol-
lowed by 2-layer MLP with 32 and 16 channels and ReLU
non-linearities. Tile descriptor has 13 channels by default,
residual blocks use 32 channels, unless mentioned other-
wise. Each intermediate propagation steps use 2 resid-
ual blocks without dilations. At each spatial resolutions,
the propagation module uses feature maps from appropri-
ate scale: full-resolution feature maps for 4 × 4 tiles, 2X
downsampled for coarser tiles that have size 8 × 8 in full
resolution, but sample 4 × 4 pixels in coarser feature map,
etc till 16X downsampled and 64× 64 tiles in original reso-
lution. The last 3 levels of propagation start at 4×4 tiles and
progressively in-paint and refine strong correct disparity at
the edges over larger regions. To achieve that, they operate
on coarse feature maps: the 4×4 tiles use 4X downsampled
features for warping, the 2 × 2 tiles use 2X downsampled
features for warping, the 1× 1 tiles use full-resolution fea-
tures for warping.

In HITNet model used in KITTI and ETH3d experi-
ments last 3 propagation steps use 4, 4, 2 residual blocks
with 32, 32, 16 channels and 1, 3, 1, 1; 1, 3, 1, 1; 1, 1 dila-
tions.

HITNet model used in Sceneflow experiments uses
16, 16, 24, 24, 32 channels for feature extractor. A sin-
gle initialization at 4x4 tiles. Last 3 propagation steps
use 6, 6, 6 residual blocks with 32, 32, 16 channels and
1, 2, 4, 8, 1, 1 dilations.

HITNetL model used in Sceneflow experiments uses
32, 40, 48, 56, 64 channels for feature extractor. A sin-
gle initialization at 4x4 tiles. Last 3 propagation steps
use 6, 6, 6 residual blocks with 32, 32, 32 channels and
1, 2, 4, 8, 1, 1 dilations.

HITNetXL model used in Sceneflow experiments uses
32, 40, 48, 56, 64 channels for feature extractor. A sin-
gle initialization at 4x4 tiles. Last 3 propagation steps
use 6, 6, 6 residual blocks with 64, 64, 64 channels and
1, 2, 4, 8, 1, 1 dilations.

HITNet model used in Middlebury experiments uses
32, 40, 48, 56, 64 channels for feature extractor. Last 3
propagation steps use 6, 6, 6 residual blocks with 32, 32, 32
channels and 1, 2, 4, 8, 1, 1 dilations.

The models used for submission for benchmarks and
scripts to run them are available at
https://github.com/google-research/google-
research/tree/master/hitnet



Figure 5: Ablation study, qualitative evaluation. Note how our HITNet model relies on all proposed design choices in order
to achieve the best results on fine details, edges and occluded regions.

Fig 6 provides more details for the initialization module
described in the main paper. Similarly Fig 7 and Fig 8 show
how resblocks are integrated into propagation logic. Finally,
Fig 9 depicts differences between propagation steps when a
single hypothesis or multiple hypotheses are used.

4. Runing Time Details

The HITNet architecture used for ETH3d and KITTI ex-
periments runs at 19ms per frame on a Titan V GPU for
0.5Mpixel (KITTI resolution) input images. The major-
ity of the time is spent during the last 3 propagation steps
(7.5 ms) that operate on higher resolutions. The multi-scale
propagation steps use down-sampled data and contribute
less than 5ms. Efficient implementation of initialization us-
ing a single fused Op generates initial disparity estimates

across all resolutions in 0.25ms, with feature extractor con-
tributing 6ms. For Middlebury experiments the model has a
run-time of approximately 107.5ms per Mpix of input reso-
lution using custom CUDA operations for initialization and
warping, when maximum disparity is 160 and the run-time
scales linearly with resolution. The run-time has a small in-
crease with disparity range, and is about 109ms per Mpix
for a maximum disparity of 1024. Without custom CUDA
operations the run-time is increased by a factor of 3, as a
single warping operation contains more than a hundred sim-
ple operations over large tensors, and while it’s trivial to
fuse them together, not doing so results in most of the time
spent on global memory access. When tested on an 18-core
Xeon 6154 CPU, the default tensorflow runtime runs 3.3s
per Mpix, which would translate to about 60s for a single
threaded runtime, which compares favourably to other CPU



Model Param GMac EPE 1 Pixel Threshold Error Rates
GC-Net [5] 2.9M [17] 8789 [1] 1.80 [17] 15.6 [17]
PSMNet [2] 3.5M [17] 2594 [1] 1.09 [17] 12.1 [17]
GANet [17] 2.3M [17] - 0.84 [17] 9.9 [17]

StereoDRNet [1] - 1410 [1] 0.98 [1] -
LEAStereo [3] 1.81M [3] 782 [3] 0.78 [3] 7.82 [3]

HITNet 0.45M 48 0.53 5.52
HITNetL 0.97M 146 0.43 4.56

HITNetMiddlebury 1.62M 187(450 for 1.57Mpix input) - -
HITNetXL 2.07M 375 0.36 4.09

Table 3: Comparisons of number of parameters and GMacs (Giga Multiply-accumulate operations) with other methods on
Scene Flow “finalpass” dataset. The numbers were partially adopted from the papers cited in the table. The lower the better.
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Figure 6: Initialization: The features extracted by the fea-
ture extractor are matched and inital tile features are com-
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methods. The CPU tensorflow runtime does make use of
SIMD instruction set, which other methods may not utilize.

5. Number of Parameters
An important aspect of efficient neural network archi-

tectures is the number of parameters they have. This will
influence the amount of compute required and the amount
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block may use dilated convolutions to increase the speed of
diffusion.

Warp 

2*(16 + 1) channels

hinit

co
nc

at
en

at
e

ResNet blocks

hcoarse Warp 

h’init

h’coarse

winit

wcoarse

hout= hinit+h’init , winit>wcoarse

hout= hcoarse+h’coarse , winit<=wcoarse

Right features Left features

Figure 9: Propagation with multiple hypotheses.

of memory needed to store them. Moreover, being able to
achieve good performance with fewer numbers of parame-
ters makes the network less susceptible to over-fitting. In
Tab. 3 we show that our network is able to achieve better re-
sults than other approaches with a significantly lower num-
ber of parameters and compute.



Having less parameters also increases the generalization
capabilities of the proposed method: indeed less learnable
weights implies that the network is less prone to overfitting
- our approach is able to outperform multiple state-of-the-
art baselines when trained on synthetic data and tested in
real-world scenarios.
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